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1.0  Introduction 

 Disclaimer 
The views expressed in this document do not represent the opinions of FHWA and do not 
constitute an endorsement, recommendation, or specification by FHWA. 

 Acknowledgments 
FHWA would like to acknowledge the assistance of the North Florida Transportation Planning 
Organization (NFTPO) who generously agreed to share their models for this work. 

 Introduction and Approach 
This report describes the experiment performed using Exploratory Modeling and Analysis (EMA) 
with detailed simulation models to help transportation planning agencies understand the impacts 
of connected vehicle (CV), autonomous/automated vehicle (AV), and ride-hailing technologies. 

Connected and autonomous/automated vehicle (CAV), which combines CV and AV capabilities, 
is an increasingly common term. CAV encompasses both CVs with vehicle-to-vehicle (V2V), 
vehicle-to-infrastructure (V2I), or vehicle-to-everything (V2X) communication technologies with 
AV technologies. Exploratory modeling may focus more on either the connected capabilities or 
the autonomous capabilities of vehicles. For example, a city or state may want to grow/support 
V2I technologies through capital commitments, while modelers (as in the example exercise 
described here) may be more interested in analyzing consumer adoption rates of AVs. 
Importantly, a CV may not be autonomous, and an AV may not be connected. 

Ride-hailing, also known as real-time ridesharing, matches a car and driver with the requestor to 
make a one-time trip in the immediate future. Ride-hailing has been popularized by transportation 
network companies (TNCs) like Uber and Lyft. At the time of this writing, nearly all ride-hailing 
services available to the public require a human driver for the vehicle. In the future, TNCs may 
shift to a fleet of CAVs, or auto manufacturers may deploy fleets for drivers to rent/share while 
doing ride-hailing work. 

The instructions and accompanying example exercise described here integrate the DaySim 
activity-based model (ABM) with the TransModeler dynamic traffic assignment (DTA) model for 
the Jacksonville, Florida, region. The integrated model system simulates dozens of different 
scenario combinations to explore potential outcomes and find critical input assumptions while 
identifying future policy directions that are likely to be the most robust in the face of “deep 
uncertainty.” The approach adapts the travel demand model to simulate households’ decisions 
whether to purchase CAVs instead of conventional vehicles and to simulate travelers’ decisions 
whether to use CAV-based carsharing and ride-hailing services. The dynamic assignment model 
simulates operating characteristics of CAVs and the performance of CAV-only infrastructure 
under different demand scenarios. 
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The organization of this report is as follows: 

 Introduction to Exploratory Modeling and Analysis. 

 Review of ABM and DTA Models and Approach to Integration. 

 Revisions to the ABM for CAVs. 

 Revisions to the DTA Models for CAVs. 

 Example Exploratory Model Runs and Analysis. 

 Conclusions and Future Areas of Research. 

The primary objective of this work is to demonstrate and assess the reasonableness of EMA with 
an integrated ABM-DTA model for understanding the impacts of CAVs and ride-hailing in the long-
range planning context. The existing ABM and DTA models were extended/adapted in a 
reasonable manner to incorporate an understanding of CAVs and ride-hailing. Like most modeling 
exercises, in practice, the limitations of existing frameworks shape the current approach. 
However, even while working largely within the existing model frameworks, the two core modeling 
tools serve as an excellent starting point for this exercise and, as modified, represent the most 
successful integration of ABM and DTA to date. 

For more detail about the initial research-oriented phase of this effort, see Volume 1: Integrated 
ABM DTA Methods to Model Impacts of Disruptive Technology on the Regional Surface 
Transportation System – A Feasibility Study. 
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2.0 Overview of Exploratory Modeling and Analysis 
EMA is a systematic approach to perform sensitivity analyses using models when users cannot 
assert many of the model inputs with confidence. This helps simultaneously test several different 
input assumptions. The objective is to find patterns in the results to guide robust decision-making 
(Lempert, et al., 2003). In brief, the core components of EMA are as follows: 

 Define the scope of the system analysis. 

 Define the key system relationships and sources of uncertainty. 

 Define a method for modeling the system (interactions and inputs). 

 Define a method for simultaneously varying the input assumptions to cover a wide range 
of future scenarios along the defined dimensions of uncertainty. 

 Define a method for investigating and communicating the results of applying the model(s) 
across the wide range of scenarios. 

 Uncertainty in Travel Demand Forecasting 
As described by Dewar and Wachs (2008), travel demand forecasting is especially appropriate 
for EMA since: 

“Travel demand forecasting as widely practiced today deals inadequately with 
uncertainty…The current transportation modeling process is demanding in the sense that 
it employs a great deal of data to a large number of interconnected models having many 
parameters. The complexity of the modeling process, however, does not extend to the 
accurate representation of complex economic and social phenomena, and point estimates 
of many quantities are used that make it difficult to analyze or even to represent the 
uncertainty that characterizes transportation systems and traveler decision making.” 

As suggested above and described in Table 1, travel demand models typically allow for variations 
in a few key inputs such as the spatial allocation of households and employment and the current 
transportation options. However, foundational changes, such as new modes of travel or new 
relationships between the economic and social components of travel, require making many 
uncertain assumptions for modeling. These uncertain assumptions are best understood in the 
context of EMA. 
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Table 1. Typical travel model input variation across scenarios. 

Yes No Comments 

Spatial allocation of 
households and 
employment 

Total regional population, 
employment, demographic 
shifts 

Sometimes scenarios allow for structural shifts 
in the region/economy 

Transportation 
infrastructure, extent 
and attractiveness 
of existing services, 
and pricing 

Basic types of travel modes 
available (especially for auto) 

To model CAVs and the ride-hailing scenarios, 
the basic types of modes available need to be 
revised, which requires many uncertain 
assumptions. As a result, this is not typically 
done in scenario analysis.  

Travel demand 
management (such 
as parking cost) 

Model relationships and 
parameters (such as parking 
no longer being needed for a 
single-occupancy auto trip) 

To model CAVs and the ride-hailing scenarios, 
one must vary the model relationships and 
parameters, which requires many uncertain 
assumptions 

 EMA Steps for this Example Exercise 
Even though the word “exploratory” may connote an ad hoc approach, EMA is a structured 
methodology for investigating future scenarios with diverse sources of uncertainty. This example 
exercise demonstrates an approach to design and test an analytical framework to support the 
EMA process. The main steps in the approach for this exercise are as follows: 

1. Define and select the key sources of uncertainty for input assumptions and the levels of 
each. (See Key Sources of Uncertainty) 

2. Design the analytical model framework to simulate scenarios and ensure that it can 
represent each of the selected input assumptions. (See Review of ABM and DTA Models 
and Approach to Integration and Revisions to the ABM Model for CAVs/Revisions to DTA 
Models for CAVs) 

3. Create an experimental design to efficiently analyze the influence of each level of the 
various input assumptions on the simulated scenario outcomes without simulating every 
possible combination of inputs. (See Example Exploratory Model Runs and Analysis) 

4. Select the scenario outcomes to evaluate and the metrics and analysis methods to 
evaluate them. (See Example Exploratory Model Runs and Analysis) 

5. Implement and test the analytical model framework, testing the reasonableness in terms 
of reproducing the current situation and representing key types of sensitivities, including 
the sensitivities to the selected sources of uncertainty. (See Revisions to the ABM Model 
for CAVs/Revisions to DTA Models for CAVs) 

6. Conduct the scenario simulation runs specified in the experimental design. (See Example 
Exploratory Model Runs and Analysis) 
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7. Analyze the selected scenario outcomes as a function of the input assumptions and 
communicate the results to help understand the relative importance of the key sources of 
uncertainty. This includes regression analysis of the scenario outputs as a function of the 
input assumptions. (See Example Exploratory Model Runs and Analysis) 

8. Evaluate the findings and possible extension or enhancement through further EMA. (See 
Conclusions and Future Areas of Research) 

 Key Sources of Uncertainty 
EMA first requires defining and selecting the key sources of uncertainty for use as input 
assumptions and the levels of each to test. In the example exercise described here, the project 
team focused on transportation supply and demand in the Jacksonville, Florida, metropolitan 
region. This is the same planning region as modeled for the metropolitan planning organization’s 
long-range transportation plan. This region was selected for this example exercise since its 
existing ABM and DTA models could be adapted for EMA of CAVs. 

Next, the project team identified and selected the multiple dimensions of uncertainty related to 
CAV adoption and use. The selected sources of uncertainty enabled the project team to assess 
the practicality and effectiveness of using the integrated ABM-DTA model for EMA. While a more 
comprehensive EMA application might consider many additional sources of uncertainty, the 
approach and example exercise outlined in this report included the set that the project resources 
permitted studying. 

The key sources of CAV travel demand uncertainty for this example exercise are as follows: 

1. The market penetration and use of AVs is the highest-priority assumption to include in 
the ABM. Simulating the effect of AVs on the network requires predicting whether each 
auto trip is made in a conventional vehicle or AV. Hence, it was necessary to adapt 
DaySim to “decide” which households will choose to own AVs instead of conventional 
vehicles. 

2. The disutility of in-vehicle time in AVs is another assumption to include in the ABM. 
Productivity, comfort, and perceived safety can affect this assumption. As described later, 
different value-of-time (VOT) distributions are assumed to directly or indirectly affect every 
choice model in the ABM and this informs the DTA. 

3. The level of use of carsharing and ride-hailing as a substitute for private vehicle use 
is a third critical assumption to include in the ABM. 

The project team considered other sources of travel demand uncertainty but did not include these 
in this example exercise due to the significant level of effort required to adapt the existing ABM 
framework. These other sources of uncertainty are as follows: 

1. Parking behavior at the destination for AV trips may change to include use of nearby 
superstacked parking at remote parking locations (e.g., just outside the city center). 
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2. Households may change their escorting/chauffeuring behavior because of owning 
AVs. The need to give other people rides would clearly diminish with AVs, but it is not 
obvious what other social and safety considerations will arise. Such a change would 
require significant software revisions to simulate every detail of the behavioral 
mechanisms of how such a change might manifest between household members. 

3. The generation of “empty” vehicle trips on the network could arise from several types 
of behavior. One is the case of household-owned AVs being used for driverless pick-
up/drop-off trips. Other types of empty vehicle trips can pertain to autos owned by ride-
hailing services searching for and picking up passengers and AV trips to remote parking 
locations. The ABM estimates trips for individuals and does not explicitly model vehicles. 

4. Telecommuting and peak-spreading behavior could change because of AV ownership 
and use. The ABM tour generation and scheduling models are sensitive to the disutility of 
auto trips at different times of day, so the demand models already reflect such changes to 
some extent without adaptation. However, it is conceivable that mass adoption of AVs and 
TNCs could result in systemic travel changes and cause other shifts to the timing of trips. 
For example, work and school hours could be made more flexible so that the same number 
of AVs could serve a greater number of trips. This project did not consider this revision 
since it requires significant updates to the day-pattern models used to build the ABM. 

5. Latent demand for car travel could generate new trips in currently congested areas if 
congestion levels were reduced considerably using AVs or ride-hailing systems. Since 
major reductions in congestion are not expected on a region-wide basis, the extent of 
potential induced travel is uncertain. 

The key sources of CAV network supply uncertainty for this example exercise are as follows: 

1. Different vehicle headway and speed characteristics for CAVs since CAVs are 
expected to achieve higher safe traveling speeds or shorter safe following distances than 
conventional vehicles. 

2. Provision of CAV-only lanes since CAVs will operate most safely and efficiently when 
they only interact with other CAVs. 

The project team considered other sources of network supply uncertainty but did not include these 
in this example exercise due to the significant level of effort required to adapt the existing DTA 
framework. These other sources of uncertainty are as follows: 

1. The frequency and severity of accidents for CAV and conventional vehicles in 
dedicated and mixed-use lanes was not considered in the initial EMA work but is a good 
candidate for future work. 

2. Narrowing of traffic lanes made possible by CAV-only traffic and resulting changes in 
capacity was not considered for inclusion in the DTA since the existing network facilities 
are expected to remain intact. 
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3. The location and use of parking, including superstacked or remote parking for self-
parking vehicles was not considered in the initial EMA work but is a good candidate for 
future work. 

4. Paid ride-hailing operator characteristics, including fleet size, where vehicles in the 
fleet are located when the simulation begins, how best to match vehicles with ride requests 
(by making use of constraints such as the travel time between a vehicle’s current location 
and the location of the traveler requesting a ride), (if and) when vehicles will reposition 
themselves after dropping off a customer, what to do with requests that cannot be served 
within reasonable time constraints by the available fleet, etc. The project team designed 
and implemented a paid ride-hailing (TNC) operator module but was not able to finalize it 
in time for the EMA exercise. 

5. The location and use of parking, including superstacked or remote parking for self-
parking vehicles was not considered in the initial EMA work but is a good candidate for 
future work. 

The adaptations to the ABM and DTA to incorporate the key sources of uncertainty are described 
in the Revisions to the ABM Model for CAVs and Revisions to DTA Models for CAVs sections. 
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3.0  Review of ABM and DTA Models and Approach to 
Integration 

The foundation for the EMA analysis is the DaySim ABM framework and software (Bradley, et al., 
2009) and the TransModeler DTA software. DaySim was first applied in the Jacksonville region 
in 2012 for the Strategic Highway Research Program (SHRP2) C10A project (Strategic Highway 
Research Program, 2014). The NFTPO subsequently adopted DaySim as the model for project 
planning in 2016 (NFTPO, 2016). The TransModeler was implemented in the Jacksonville region 
in 2015 by dynamically assigning the trips output by the existing ABM (Morgan, et al., 2015). 

 Existing ABM and DTA Models 
The Jacksonville ABM operates at the individual parcel level for land-use variables and spatial 
choice models. The auto and transit networks are represented at the zonal level with 
approximately 2,500 zones in the region. The DaySim models use 30-minute time periods for 
simulation and interpolate to predict the starting and ending time for each activity down to the 
minute. The highway and transit assignments and skims, however, only treat five different periods  

of day (AM peak, midday, PM peak, evening, and night). 

The DaySim software is open source and is maintained online (RSG, 2018). It includes a 
regression-testing system that coordinates across changes made for several different client 
agencies, ensuring that a change made for one user does not introduce unanticipated changes 
for other users. DaySim is written in C# for the Windows .NET platform and supports 
multithreading. Currently, on a Windows workstation with 12 cores, DaySim requires 
approximately 30 minutes to simulate weekday travel for the roughly 2 million residents of the 
Jacksonville region. Memory required for the Jacksonville region is less than 8 GB of RAM. 

The Jacksonville ABM is currently integrated with Cube, which performs auto and transit network 
assignment and skimming of zone-to-zone time and cost matrices. The scripts for running the 
nonresident market components (i.e., freight, external trips, visitors, and airport travel) are also 
implemented in Cube using a zonal trip-based framework. These models and traffic assignment 
are run for three or four global iterations with the DaySim resident demand simulation. The Cube-
based model components are responsible for a significant share of the runtime for the entire 
model system. 

TransModeler is a commercial software package (Caliper Corporation, 2018). The TransModeler 
DTA encompasses the whole regional planning network and runs microscopically. Microscopic 
simulation in TransModeler conveys the following features and advantages: 

 Ground truth, accurate road and intersection geometry. 

 Lane-level and intersection-area representation. 

 Temporal dynamics (as low as 0.1 second). 

 Vehicle dynamics (e.g., car-following, lane-changing). 

 Realistic route choice models. 
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 Complex network infrastructure (e.g., traffic signals, variable message signs, sensors). 

 Multiple simulation modes, user classes, and vehicle types. 

Before this project, the traffic simulation software allowed the user to interactively produce travel 
time matrices resembling network skim matrices based on simulated trip travel times. However, 
the ability to fill in cells representing origins, destinations, and time intervals for which no trips 
were simulated based on time-dependent shortest paths was not a fully developed feature. In 
addition, the creation of the matrix could not yet be automated in a model script for integration 
with the ABM. As described later, the project team evolved the skim matrix feature in the DTA 
software for this example exercise. Integrating the ABM with the DTA (rather than static 
assignment) leverages the activity-based demand simulation’s spatial and temporal detail. 

Number of processing cores on the central processing unit (CPU) is probably the single-most 
important determinant of model runtime. A workstation with a minimum of 12 cores is 
recommended to run the model. However, CPU clock speed, RAM, and hard disk type (e.g., hard 
disk drive vs. solid state drive) also have an effect. Runtimes to complete 25 iterations of the 4-
hour (5:00 a.m.–9:00 a.m.) peak period DTA and to generate skims on various Windows 
workstations with 12 cores required ran in as little as 15 hours on some workstation configurations 
and as many as 36 hours on others. Later iterations in a DTA run in less time than the earlier 
iterations, in which route choices based on unequilibrated travel times and delays are suboptimal. 
Hence, a DTA run for 50 iterations would not quite double running times. 
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Figure 1. Regional DTA. 

 

 Approach to Integration 
DaySim provides the demand (a list of trips) for TransModeler to simulate on the network. 
TransModeler provides congested travel times back to DaySim to use in simulating demand for 
the next iteration. The demand simulation and network simulation can run iteratively until an 
acceptable level of stability is reached in the travel time matrices. This conceptual framework is 
not fundamentally different from what is currently used for the integration of DaySim with static 
assignment using Cube or TransCAD. The main differences are that the TransModeler simulation 
framework is not limited to a specific zone system or to broad time periods for traffic assignment, 
allowing for flexible customization of the level of spatial and temporal fidelity that best facilitates 
integration with a given ABM (as discussed below). The traffic simulation can leverage the spatial 
and temporal detail produced by the demand simulation and model link delays and intersection 
delays more realistically than is possible in static zone-to-zone assignment methods. All other 
non-DTA model components (e.g., external trip matrices, transit skims) are borrowed from the 
existing NFTPO model. A more complete solution would address these integration deficiencies, 
but this is beyond the scope of this EMA example. 
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In sum, the example exercise ABM-DTA integration is twofold: 

 ABM to DTA: 

o The ABM outputs a list of trips (over 6 million daily trips), parcel-to-parcel, minute-
to-minute. 

o The DTA model aggregates the parcel-level trips to traffic analysis zones (TAZs) 
and then builds several zone connectors to simulate the diversity of real-world 
loading points. 

o The non-ABM demand for freight, externals, etc. from the existing NFTPO model 
is also passed to the DTA as aggregate trip matrices. These trips are processed 
into individual trip lists with more detailed simulated times and locations. 

 DTA to ABM: 

o The DTA outputs dynamic TAZ-to-TAZ travel time skims, in 30-minute periods, by 
user class (e.g., conventional vehicles and AVs). 

o The dynamic travel time skims are created by first running the simulation and then 
calculating a shortest-path travel time for each origin, destination, and departure 
time period. The skimmed paths include average simulated turn movement delay. 

o The nonauto network LOS skims (e.g., walk-to-transit) remained fixed from the 
existing NFTPO model. 

Additional information on the integration follows. 

 ABM Enhancements for DTA Integration 
The ABM software already outputs trips by minute and by parcel with user VOT. In addition, 
DaySim can also read TransCAD/TransModeler skim matrices by time period. The only revision 
made to the ABM software for DTA integration was to modify the chronological consistency of 
trips generated (See Issues Encountered). 

 DTA Enhancements for ABM Integration 
The DTA model simulates trips having individual and independent departure times and route 
choice behaviors and includes scenarios that represent periods of the day spanning multiple 
hours, including AM and PM peak periods and a midday (MD) period in between. Trips have 
individual driver and vehicle characteristics, and those characteristics can assume the user type 
and vehicle class properties of the models from which they are derived. For instance, medium 
and heavy truck trips are generated from freight trips produced by the NFTPO trip-based model, 
and numbers of occupants and VOT are supplied by the lists of tours generated by the DaySim 
ABM. 

As part of the DTA model’s development prior to this example exercise, custom tools were 
developed to read matrices of external and freight trips in Cube format from trip-based elements 
of the regional model and lists of internal trips in DaySim format from activity-based elements of 
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the regional model. The project team enhanced both the TransModeler software and the tools 
previously developed to link the DTA model to the regional model to support tighter integration 
between the DTA model and the DaySim-Cube travel demand model: 

1. The project team extended the TransModeler software to manage the simulation of 
DaySim tours as interdependent, rather than independent, sequences of trips. The project 
team also modified the tools that transfer the trip data between the DTA model and the 
NFTPO regional model to maintain the relationships between trips in a tour. 

2. The project team wrote modeling software and scripts to make it simpler to run DTAs 
programmatically and to automate the production of dynamic travel time skims for 
consumption by the DaySim model. The example exercise produced skimming tools 
accessible as functions belonging to TransModeler’s GIS Developer’s Kit, a scripting 
environment enabling customization of the software. For example, to produce dynamic 
skims once a DTA is completed, run the following commands: 

self.SetSimulationRunMode("Simulation") 
self.SetDynamic Skims("True") 
self.RunSimulation() 
runs = self.GetDynamicSkimRuns() 
self.CreateDynamicSkimMatrix({ 

{"Run", runs.length }, {"Variable", "Travel Time" }, {"Matrix 
Type", "Dynamic" }, {"Interval", 30 }, {"Vehicle Category", 
{"User A", "User B"}} 

}) 

where “Interval” is the desired time interval size into which congested travel times are 
aggregated and is the interval size that the NFTPO DaySim model expects, “User A” is a 
designation of trips (such as AVs), and “User B” is a designation of trips (such as non-
AVs). 

 Integrated Setup 
Once the integration of the model components is functioning, the next step is to finalize a model 
system that is practical for the many model runs that comprise the EMA approach. Due to the 
long runtimes associated with DTA, the project team decided to only run the example exercise 
DTA for the AM period. As a result, only the dynamic skims (in 30-minute time intervals) for the 
conventional and CAV travel times for the AM period and for the PM period (after the AM skims 
are transposed) are fed back to the demand model. The example integrated ABM-DTA model is 
run through a DOS BAT file that calls the ABM and DTA programs iteratively and manages the 
input and output files accordingly (i.e., trip lists and dynamic travel time skims by iteration). 

 Verification 
Before applying the integrated model system for EMA, it is important to verify the system produces 
reasonable results. A good starting point for verifying the model system is to review the dynamic 
travel time skims, the demand model trip lengths and mode shares, and the DTA simulation 
results. The key new output of the ABM-DTA integrated system is the dynamic travel time skims. 
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Comparing the dynamic skims to the static skims and to expected travel times from a third-party 
source such as Google Maps is recommended.  

From the example exercise, the mean DTA travel time skim value was approximately 10 minutes 
greater than the mean static model travel time skim value (Table 2). The maximum origin-
destination (OD) travel time is also significantly greater in the DTA model. These patterns are true 
for all dynamic time periods. 

Table 2. Descriptive statistics of AM period skims. 

DS\Mode 
SOV 

Static 
HOV2 
Static 

HOV3 
Static 

5:30– 
6:00 

Dynamic

6:00–
6:30 

Dynamic

6:30–
7:00 

Dynamic

7:00–
7:30 

Dynamic

7:30–
8:00 

Dynamic 

8:00– 
8:30 

Dynamic 

8:30–
9:00 

Dynamic
Mean 41.2 41.2 41.2 49.8 50.9 52.1 52.8 52.9 52.2 51.8 

Median 38.3 38.3 38.3 44.7 45.4 47.4 48.2 48.0 47.0 46.4 
Std. Dev. 26.8 26.8 26.8 33.1 33.5 33.7 33.3 33.5 33.5 33.6 
Minimum 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Maximum 140.1 140.1 140.1 208.4 209.9 210.2 210.7 210.7 210.7 210.8 

To better understand the differences, the project team randomly chose 10 OD pairs and compared 
the static and dynamic skims to the Google travel times. Figure 2 shows the Google Maps path 
and Table 3 compares skims from the example exercise. 

 

Figure 2. Google Maps path. 

Source: Google Maps (Map data ©2018 Google) 

The project team found the dynamic travel times match well with the Google Maps travel times. 
The static model travel times appear lower, at least in comparison to Google Maps. Overall, the 
travel times for the selected OD pairs appear reasonable 
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Table 3. Comparison of skims with Google Maps. 

OD Pair Static Dynamic (AM) Google Maps (AM) (Monday April 2, 2018) 
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0 
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10 541 50 50 50 54 55 59 60 59 55 55 50–70 50–75 55–90 55–85 55–80 55–75 55–75

410 2577 53 53 53 52 52 52 52 53 52 52 50–65 50–65 50–65 50–65 50–70 50–70 50–65

650 1060 9 9 9 12 13 13 14 15 15 14 12–16 12–18 12–18 12–20 12–20 12–22 12–22

858 1280 49 49 49 54 55 55 56 56 55 55 55–70 55–75 55–75 55–85 55–85 55–80 55–80

896 759 18 18 18 22 24 25 25 25 24 24 22–28 24–35 26–45 28–50 28–45 26–40 24–35

1084 2286 5 5 5 6 7 7 7 7 7 7 5–7 5–8 5–9 5–9 5–9 5–9 5–9 

1091 1030 5 5 5 7 7 7 8 8 8 7 9–14 9–14 10–14 10–16 10–14 10–14 10–16

1597 183 49 49 49 53 57 62 62 61 60 59 60–80 60–80 60–80 60–80 60–80 60–80 60–80

2226 382 28 28 28 32 34 35 37 36 35 34 35–45 35–55 35–60 40–70 40–65 40–60 35–55

2551 919 33 33 33 34 34 37 37 38 35 34 30–40 30–40 30–40 30–45 30–40 30–40 30–40

The project team then investigated the correlation between the static and dynamic skims. In the 
example exercise, the project team drew a series of scatterplots with static skims on the x-axis 
and the dynamic skims of various time intervals on the y-axis, as shown in Figure 3. The results 
show a strong correlation between the static and dynamic skims, with the dynamic travel times 
higher on average. The plots also revealed a cluster of outliers parallel to and above the 
regression line. Further investigation by the project team revealed that nearly all these points are 
related to one zone, the external zone 2558, which contained a network coding error the project 
team subsequently corrected. Such errors are a routine consequence of any model’s 
development. Scrutiny of model results is critical to identifying them in the development stages of 
the EMA. 
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Figure 3. Scatterplot of static vs. dynamic (7:00 a.m.–7:30 a.m.). 

Since the ABM is calibrated to the static skims, it is important to understand how the dynamic 
skims differ from the static skims and how these differences impact the model system. The project 
team compared the DaySim demand model results with the dynamic skims to the previous results 
with the static skims. In the example exercise, DaySim trip lengths with the static skims versus 
the dynamic skims were similar, whereas trip travel times increased due to the longer travel times 
in the dynamic skims (Figure 4). Shorter trips, in terms of distance, have the largest discrepancies 
in travel times between the static and dynamic skims because differences in network loading 
between these two methods is exaggerated for shorter trips, where a higher percentage of the 
overall trip is made on network connectors. The project team addressed this issue by improving 
the DTA connector loading methods, but the exercise highlighted the importance of the verification 
process so crucial to the integration of two complex model systems. Errors in one system (e.g., 
network coding issues) can propagate to the other system and undermine the efficacy of the 
model framework for EMA. 
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Figure 4. Percentage difference of mean travel time with trip distance. 

As shown in Table 4, because of the longer auto travel times in the example exercise, auto mode 
share was reduced by 1.3%. This increased the mode share for the other modes, especially walk 
and bike, since the dynamic skims are longer for short-distance trips, which makes nonauto 
modes more attractive. 

Table 4. Percentage difference in mode share (static vs. dynamic). 

Mode Type Static Frequency Dynamic Frequency % Difference 

Bike 95,565 103,387 8.19 
HOV2 1,606,159 1,573,810 -2.01 
HOV3+ 1,108,358 1,073,491 -3.15 
School Bus 127,710 119,100 -6.74 
SOV 2,673,029 2,637,680 -1.32 
Transit 42,010 43,616 3.82 
Walk 469,337 550,681 17.33 
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In addition to the dynamic skim reasonability checks, it is important to verify the DTA model 
functions properly and converges. To do this, look for the typical red flags that TransModeler 
routinely reports as indicators that the DTA network or demand is improperly specified. These red 
flags include the following: 

 Queuing outside the network where links connected to centroid connectors are too fully 
loaded with traffic to receive new trips attempting to depart. 

 Missed turns resulting in trips failing to follow their paths and reach their destinations, 
which may occur because of network coding errors or capacity insufficient to serve the 
demand at a location. 

In the example exercise, the results were generally reasonable for exploratory modeling analysis, 
although some issues remain for follow-up work (discussed in detail below). 

 Issues Encountered 
During the development of the integrated model system, the project team discovered and 
addressed or investigated several issues and challenges requiring resolution. Key issues included 
long runtimes, loading of demand into the network, chronological inconsistency of trips, 
generating dynamic skim values when no simulated trips exist, and integration of additional model 
components (e.g., auxiliary demand, transit skims). 

 By far, the most significant issue encountered with respect to EMA is that the AM period 
DTA simulation and dynamic skim generation takes at least 15 hours depending on the 
computer configuration and because of the number of iterations required to achieve 
convergence. Because it is practically inefficient to complete the multiple model runs 
required for EMA with these runtimes, the project team simplified the demand model’s 
understanding of travel time (i.e., just using AM skims). In addition, a limited number of 
overall model feedback loops were done—typically between three and five—because of 
the long model system runtime. 

 The ABM outputs trips at the parcel level, which are aggregated to the TAZ level in the 
DTA model trip importer. The DTA model then builds several zone connectors to simulate 
the diversity of real-world loading points (Figure 5). However, the analysis of the skims 
revealed that some of the extremely long travel time OD pairs were due not to network 
travel time differences but to poor connector choice. Additionally, some of the shortest 
travel time OD pairs are also a product of connector placement and choice, sometimes in 
combination with large zone size. An example of the differences for a relatively short-
distance OD pair is shown in Figure 6. As a result, the project team considered two 
revisions to the setup:  

o The first revision was to switch to parcel-to-parcel DTA network loading instead of 
TAZ-to-TAZ to produce better estimated network travel times. However, this 
approach produced longer DTA runtimes and some unresolved questions about 
efficient software implementation and how to collapse the skimmed information to 
the TAZ level for input to the demand model.  
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o To make a detailed approach like parcel-to-parcel more manageable in the 
example exercise, the project team experimented with using microzones, which 
can be thought of as superparcels. In the example exercise, microzones produced 
a satisfactory compromise between TAZs and parcels for DTA integration. 

 

Figure 5. Connectors to approximate parcel loading. 

 

Figure 6. Path trace from 1507 to 1505 in the static and DTA models and Google Maps. 

       Source: Google Maps 



Model Impacts of Connected and Autonomous/Automated Vehicles (CAVs) and  
Ride-Hailing with an Activity-Based Model (ABM) and Dynamic Traffic Assignment (DTA)—An Experiment 

April 2018  19  

 As noted, DaySim tours in the example exercise were in priority order for a person-day 
and not in chronological order; temporal consistency across tours was not guaranteed. As 
shown in Figure 7, the same person has two different tours in the example exercise, but 
one starts before the second one finishes (i.e., the end of activity at time 514 occurs after 
the departure time of the first trip in the following tour at time 511). 

 

Figure 7. Tour and trip chronological consistency. 

Review the trips to ensure the results are typically consistent. Since the DTA is modeling 
every trip in the simulation model in a precise spatial and temporal manner, having a trip 
in a later tour start before the final trip of the previous tour ends can create problems in 
the simulation. For the example exercise, chronological consistency within the tour was 
assumed, but the project team independently simulated different home-based tours within 
a person-day. 

 A process was scripted in TransModeler to generate dynamic skims in 30-minute trip start 
time periods by querying the simulated travel times for trips in the OD pair in each 30-
minute interval. If there are no simulated trips traveling between the OD pair in the time 
interval, then a shortest-path travel time is calculated. Because the automated calculation 
of dynamic skim matrices—blending times from simulated trips with calculated dynamic 
shortest-path times—was a new development adapted for the EMA, numerous trials and 
close inspection of the resulting skims were required before the skimming step was 
operational and robust. In addition, the differences between the weighted average travel 
times across estimated paths versus the minimum shortest-path travel time when no paths 
were available in the example exercise created significant inconsistencies in travel times 
across OD pairs. As a result, the project team used the simulation to load the network and 
then used the shortest-path travel time from the loaded network for all OD pairs. In the 
example exercise, this reduced the diversity in the experienced travel times in skims, but 
it also ensured consistency in travel time costs fed back to the demand model. Certainly, 
further work in this area of the ABM-DTA integration is required. 

 As noted, the DTA only outputs dynamic travel time information for auto. It does not 
produce walk, bike, or transit network LOS indicators (i.e., skims). Running the DTA adds 
to, but does not replace, the network model component of the model system. 
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4.0 Revisions to the ABM Model for CAVs 
To complete the EMA, users must adapt the models to incorporate sensitivities to the uncertain 
inputs. In the example exercise, the project team implemented the following ABM adaptations. 

 Market Penetration of AVs 
The project team adapted the auto ownership model in DaySim in the following ways: 

1. In addition to predicting the number of vehicles owned by a household (0, 1, 2, 3, 4+), the 
model predicts the type of vehicles owned—conventional or autonomous. This is based 
on two simplifying assumptions: 

 Only two types of vehicles are specified: “conventional,” which may have some 
new connectivity safety features but will require a human operator, and 
“autonomous,” which will not require a human operator. (See Section 5.1 for a 
complete description of the levels of automation and levels simulated.) 

 A household is simulated to either own all AVs or all conventional vehicles, but not 
both. Relaxing this assumption would require a model to allocate the different types 
of vehicles to different types of trips within a household. The time required for this 
exceeds the value derived from this level of detail. 

2. The utility functions include new variables and coefficients. The probability of owning a 
specific number of AVs is a function of the same types of variables that affect the level of 
conventional car ownership in the current model, with emphasis on the following: 

 Household income level. 

 Age of head of household. 

 Household size and presence of children. 

 Household workers. 

 The commuting time disutility by car to the usual workplaces of all workers in an 
AV as compared to a conventional vehicle. 

3. The project team asserted the coefficients on the new variables and then calibrated these 
to reflect three levels of AV ownership: 

 Low: For example, 10% AV penetration, on average. 

 Medium: For example, 50% AV penetration, on average. 

 High: For example, 90% AV penetration, on average. 

In the example exercise, those asserted to be most likely to own AVs are those with higher 
incomes, lower ages, and longer commuting times. The effects of household size and presence 
of children on propensity to buy AVs was more speculative, although those with children may be 
more attracted by the presumed improved safety of owning an AV—particularly at higher overall 
market penetration levels. The variable related to the commuting time disutility also makes this 
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model sensitive to the assumption about the relative disutility of travel time in AVs versus 
conventional vehicles, which is discussed next. EMA typically includes assertions such as these, 
which require thoughtful development and testing. 

 Disutility of In-Vehicle Time in AVs 
The ABM uses the auto travel time coefficient recommended in the SHRP2 C04 project. The 
coefficient is a function of the following: 

 Tour purpose, with a somewhat higher base coefficient for work tours than nonwork tours 
(i.e. work travel is more important than non-work travel). 

 A random component, which, if specified by the user, is drawn from a log-normal 
distribution for each simulated tour. 

VOT is also influenced by the travel cost coefficient, which is a nonlinear decreasing function of 
both household income and vehicle occupancy. No obvious reason exists why using an AV should 
affect the travel cost coefficient and only the travel time coefficient was adjusted. In the example 
exercise, the project team proposed using a modified travel time disutility if a household owns 
AVs, which is specified by factoring the conventional vehicle travel time coefficient: 

 Low difference: The auto time coefficient for AVs is 10% lower. 

 Medium difference: The auto time coefficient for AVs is 40% lower. 

 High difference: The auto time coefficient for AVs is 70% lower. 

The project team assumed that the average auto time disutility would never go to zero or be 
positive, as there is often a more productive or enjoyable way to spend one’s time. (Current 
models do not assume that car passengers have a much lower disutility of time than car drivers, 
even though passengers in a conventional vehicle could conceivably do the same things as 
passengers in an AV.) 

In DaySim, the auto travel time coefficient affects every choice model, either directly or indirectly, 
through logsum variables. The models that are affected include the following: 

 Tour and trip mode choice. 

 Tour and trip departure time choice. 

 Tour and trip destination choice. 

 Tour and intermediate stop generation (full-day activity pattern choice). 

 Work and school location choice. 

 Auto ownership. 

The relative time and cost sensitivity (VOT) are written to the individual trip records for the DTA. 
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 Level of Use of Carsharing and Ride-Hailing as a Substitute for 
Private Vehicle Use 

To reflect the level of use of carsharing and ride-hailing as a substitute for private vehicle use, the 
project team added a “paid ride hail” mode to the tour- and trip-level mode choice models. (These 
models then generate mode choice logsums that are inputs to other choice models in the ABM.) 
Several types of paid ride-hailing services could exist and vary in terms of their price structure 
and flexibility in duration and distance of using the vehicle, among other attributes. As a result, 
the project team proposed to include a single generic paid ride-hail mode that captures the salient 
differences from using one’s own vehicle. 

The paid ride-hail mode is available to all travelers for all persons. The variables in the utility 
function are as follows: 

 The auto travel time to the destination. 

 The cost, which is based on auto travel distance plus a user-specified and fixed per-trip 
cost. 

 The access and egress walk plus wait time, which is a function of land-use density at the 
trip origin, with lower availability and longer wait times in more rural areas. 

 A dummy variable for zero-vehicle households. 

 A dummy variable for car-competition households (fewer vehicles than drivers). 

 Dummy variables for age groups. 

 A density variable that serves as a proxy for the availability and wait time for paid ride-hail 
options. The number of households and jobs within walking distance is already available 
in DaySim as a distance-decay weighted buffer variable. The higher this buffer density 
measure near the trip origin, the more likely the person is to use the paid ride-hail mode. 

 Effects of the ride-hailing on vehicle ownership. It is expected that a decrease in private 
vehicle ownership would accompany a large shift toward using shared vehicles. The 
model specifies the effect of ride-hailing on levels of car ownership, with the probability of 
owning zero vehicles due to the shared economy also a function of buffer density. 

The model can incorporate different paid ride-hail alternatives for different numbers of persons in 
the travel party. However, DaySim does not explicitly predict vehicle occupancy, so this does not 
enhance model accuracy. Rather, the model adjusts the cost per passenger as a function of the 
tour purpose, as average auto occupancies vary by purpose. 

For purposes of scenario testing, assumed shifts in auto ownership levels should be behaviorally 
consistent with the assumed use of paid ride-hailing modes. The variables related to auto 
ownership in the paid ride-hail mode utility ensure some consistency, but calibration is still 
necessary. Thus, the project team calibrated the auto ownership and mode choice models in the 
example exercise to reflect three different assumed levels of disaggregate demand across the 
entire synthetic population: 
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 Low: 3% of trips by paid ride-hail mode; no corresponding effect on auto ownership. 

 Medium: 30% of trips by paid ride-hail mode; 15% reduction in auto ownership. 

 High: 60% of trips by paid ride-hail mode; 30% reduction in auto ownership. 

For all levels, the project team made the simplifying assumption that paid ride-hail services will 
be the earliest adopters of AVs, so all paid ride-hail trips in the model are made in AVs. This 
assumption is mainly needed in the DTA to know how to treat such trips on the network, although 
the DTA passes separate skims for AVs and conventional vehicles back to the ABM, so it affects 
the travel time in the paid ride-hail mode utility. 

 Changes in Parking Behavior at the Destination for AV Trips 
In addition to the adaptations described above, the project team also experimented with a trip 
destination parking location choice model that considers a separate parking location zone from 
the trip destination zone. Due to project schedule constraints, this adaption was tested but not 
included in the example exercise.  

The destination parking location choice model is like how transit park-and-ride lot choice is often 
modeled. To reduce runtimes, the model is only applied in parking-constrained locations like the 
city center. The choice set for the parking location choice model includes nearby superstacked 
parking locations, which were more difficult to define than expected. The project team identified 
the following important criteria for siting good locations for AV mass-parking locations for 
downtown trips: 

 Near the edge of the downtown area, where there is space (or existing parking) available 
(not too far from downtown). 

 On a major arterial where the flow is fairly one-sided (i.e., many vehicles are coming into 
downtown in the AM peak, but not many people are leaving downtown in the AM peak). 
In theory, many empty AV trips would park there, making travel in a direction counter to 
peak flow optimal to avoid adding to congestion. (The same would be true in the reverse 
direction in the PM peak when the cars come back to pick up their owners, although the 
example model does not explicitly simulate the PM peak.) 

Figure 8 shows the modeled locations for superstacked AV parking. The final section discusses 
the results of the parking location choice model. 
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Figure 8. Potential superstacked parking locations. 

      Source: OpenStreetMap 

 Changes in the ABM Skim Reader and Output Files 
To input a separate set of network LOS skims for AVs, the project team updated the DaySim skim 
reader (called the PathType model) to support a new mode, AV, just like it does for the SOV, 
HOV2, and HOV3 modes. This allows the user to specify skims for travel time, distance, and toll. 

In the household-level output file, each output household record has one of the following values 
if auto type choice is included in the auto ownership model: 0 = household owns conventional 
vehicles and 1 = household owns AVs. 

In the trip-level output file, the project team updated the driver or passenger field to include two 
new codes (3 and 4) to identify AV trips, as opposed to codes 1 and 2 for non-AV trips. An 
additional code (5) was added to identify AV trips with no driver or passenger for the case of AV 
parking location choice. The mode field was also updated to include paid ride-hail (9). 
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 Verification 
To start, verify any ABM revisions. In the example exercise, the project team verified the ABM 
revisions to support the CAVs EMA by running the software through several of the EMA scenarios. 
See Example Exploratory Model Runs and Analysis for more detail. 
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5.0 Revisions to DTA Models for CAVs 
The DTA model simulates driver behaviors, including acceleration and lane-changing decision-
making, in 0.1-second time steps. By adapting the models of those behaviors to reflect the way 
an AV, as opposed to a human driver, would operate, the project team tested the impacts of AV 
and related technologies via the example exercise. To that end, the project team enhanced 
TransModeler to support AV analysis in several respects: 

 The vehicle characteristics mentioned earlier were extended to include an AV designation. 
This enhancement of the demand-side representation allowed for the analysis of varying 
degrees of market penetration for AVs and for another model, such as an ABM, to supply 
a list of trips that explicitly identifies AVs. 

 In TransModeler, the simulation network uses an explicit and detailed representation of 
lanes and lane geometry. The project team updated the software to designate whether 
individual lanes allow AVs to operate autonomously. This augmentation of the supply-side 
representation facilitates exploration of scenarios in which certain lanes or facilities may 
exist exclusively for AVs. 

 The representation of simulated drivers and vehicles was extended to allow the levels (L) 
of automation devised by the Society of Automotive Engineers (SAE) International and 
adopted by the U.S. Department of Transportation (L0 through L5 described below)—
which include automation of acceleration, steering, and other aspects of driving—applied 
to a user-defined vehicle class. 

 The project team identified and selected an acceleration model from the research literature 
(Wang and Rajamani, 2004) and implemented it to represent a mode of cooperation 
between CVs, referred to as cooperative adaptive cruise control (CACC). 

 Adaptation of the DTA for Simulating AVs 
The project team enhanced TransModeler to support the simulation of AVs. With this 
enhancement, the modeler can create new vehicle classes and assign to each vehicle class one 
of the following levels of automation (Figure 9): 

 Level 0—No Automation. 

 Level 1—Driver Assistance: The onboard driver assistance system can perform steering 
(modifying direction) or acceleration/deceleration tasks by using information about the 
driving environment; the driver performs all other driving tasks. 

 Level 2—Partial Automation: The onboard driver assistance system performs both 
steering (modifying direction) and acceleration/deceleration by using information about the 
driving environment; the driver performs all other driving tasks. The driver must be 
available/alert to take over, if needed. 

 Level 3—Conditional Automation: An onboard driving system operates all aspects of 
driving; the driver responds only to requests to intervene. 
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 Level 4—High Automation: An onboard driving system operates all aspects of driving 
and continues to do so even if the driver fails to respond to requests to intervene. This 
level of automation may have situational limitations (e.g., only within a geofence). 

 Level 5—Full Automation: An onboard driving system operates all aspects of driving 
under all roadway and environmental conditions, negating any need for driver intervention. 

 

Figure 9. SAE automation levels. 

                Source: US DOT 

The model simulates vehicle classes that are not assigned an automation level, or that are 
assigned L0, according to the default models of driving behavior in TransModeler. When L1 (driver 
assistance) is assigned to a vehicle class in TransModeler, the user can choose whether the 
acceleration/deceleration task or the steering task is automated. Automated driving tasks are 
assumed to operate mechanically and deterministically by the vehicle, owing to some combination 
of onboard camera, sensors, computers, and other hardware. Driving tasks that are not 
automated are assumed to remain under the control of the human driver and exhibit the 
heterogeneity inherent in human behavior and decision-making. That heterogeneity is captured 
in a microsimulation environment through random variables that are integral to stochastic, or 
Monte Carlo, simulation. To approximate the effects of automation, the random variables that are 
part of the automated task are assumed to have narrow or zero variance, as appropriate. 

For instance, when acceleration/deceleration is automated, the car-following model in 
TransModeler simulates more uniform, deterministic vehicle responses to the speed and proximity 
of the leading vehicle. This adaptation of the car-following algorithm emulates adaptive cruise 
control absent the influences of driver attention, reaction time, or other human factors. 
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Steering in the context of L1 through L3 describes either corrective or otherwise limited assistive 
actions meant to keep a vehicle centered in its lane and does not necessarily imply the ability to 
navigate or complete a trip autonomously without driver input or attention. Because 
TransModeler, like other simulators, assumes that vehicles—with some exceptions, notably 
motorcycles—do not deviate from the center of the lane, there is little scope for adapting the 
software to explore the impacts of steering automation in that regard.  

However, the software was adapted to assume that a vehicle with automated steering will control 
steering during the act of changing lanes. Specifically, a vehicle under automated steering will 
reject short gaps in the target lane that a human driver may accept, requiring a safer gap before 
commencing the lane-change maneuver. In addition to improving safety, which is not directly 
measured in the simulation, the automation of steering during lane-changing may contribute to 
more stable traffic flow by avoiding short gaps that may cause the following vehicle in the target 
lane to brake and shockwaves to develop as a result. The automation of steering during lane-
changing may also reduce disruptive lane-changing events altogether because drivers may 
forego discretionary lane changes—those that are not necessary to follow one’s path—in 
congested regimes owing to a scarcity of safe gaps. 

When L2 is assigned to a vehicle class, both acceleration/deceleration and steering tasks are 
operated by the vehicle, and the stochastic elements for both tasks are eliminated. However, 
because steering is already idealized to a degree as previously described, there is little practical 
distinction in the simulation between L1 and L2. 

Above L2, the distinctions between levels of automation have less to do with which aspects of 
driving are automated and more to do with when, or under which circumstances, the driver is 
prompted or expected to intervene and assume control of the vehicle. However, those events and 
circumstances are not clearly defined in the literature. Without credible, concrete direction from 
the literature or from auto manufacturers, it is not known whether those events or circumstances 
have direct or explicit representation in a simulation model. 

That said, a vehicle with L3 automation is one that can monitor the environment and manage 
most driving tasks. In the adaptation in TransModeler, “most driving tasks” are assumed to include 
selection of a “desired” speed, or the speed at which drivers travel when uninhibited by other 
vehicles or traffic control. When L3 is assigned to a vehicle class, the vehicle will select the 
advisory speed (i.e., the speed limit) as its desired speed, with the assumption that the advisory 
speed is knowable through geolocation and onboard map data or visual identification of speed 
limit signs with onboard cameras. Thus, L3 automation can have speed harmonization benefits in 
the model in addition to the advantages afforded by L2 automation. 

In addition to vehicle automation, technologies and strategies exist that are conditioned on 
communication and coordination between vehicles (e.g., CVs and CACC). With CACC, a vehicle 
chooses a headway at which to follow the leading vehicle, and it can sustain short headways 
because the direct communication allows for rapid responses to changes in the leading vehicle’s 
speed or proximity. Other related technologies considered for inclusion in the simulation include 
technologies that involve communication and coordination with infrastructure (e.g., V2I). V2I 
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could, for example, regulate/harmonize speeds upstream of an incident or optimize traffic signal 
timings in real time. 

In a simulation environment like TransModeler, the line between driver and vehicle is not well 
defined, which makes it somewhat difficult to differentiate between the levels of automation 
described here. In much of the traffic simulation literature, in fact, the driver and vehicle are 
conflated, referred to as the “driver-vehicle entity,” or DVE. The same is true in TransModeler. It 
is unclear how a simulation model might represent driver intervention—which distinguishes L3, 
L4, and L5. Hence, L3 through L5 are not yet differentiated in any substantive way in the current 
adaptations. 

 Adaptation of the DTA for Simulating Connected Vehicles 
In CACC, vehicles use a feedback loop of measurement (of the position and speed of the vehicle 
in front) and acceleration (or deceleration) to maintain a safe and consistent following speed and 
distance or time headway. In the example exercise, the project team assumed that vehicles 
operating in CACC will maintain a desired following time headway. To achieve this, a constant 
time gap model was implemented (Wang and Rajamani, 2004): 

 

Figure 10. Equation. Constant time gap. 

where ai is the acceleration applied by the subject vehicle i, h is the desired constant time gap, dv 
is the difference in speed between the subject vehicle and the vehicle in front of it (vi – vi-1), λ is a 
parameter, and δi is a deviation from the desired spacing given the desired headway and is 
calculated as follows: 

 

Figure 11. Equation. Desired headway calculation. 

where εi is the physical gap between the vehicles and L is the desired, or minimum, physical gap 
between the vehicles at zero speed (vi = 0). 

The constant time gap model is a reasonable approximation of an adaptive cruise control system. 
In the DTA software, the modeler can choose which classes or groups of vehicles operate with 
CACC. 

 Changes in the DTA Trip Reader 
As noted, the ABM trip lists for the EMA include new codes for paid ride-hail mode and driver or 
passenger AV or non-AV trip. If the value of mode is 3 (SOV), 4 (HOV-2), 5 (HOV-3+), or 9 (paid 
ride-hail), and the value of driver or passenger is 1 to 5, then the following rules apply for assigning 
trips to the network: 

1 = driver (or main ride-hail passenger) in a conventional vehicle >> assign to network. 
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2 = passenger (or other ride-hail passenger) in a conventional vehicle) >> do not assign 
to network. 

3 = main passenger in an AV >> assign to network. 

4 = other passenger in an AV >> do not assign to network. 

5 = no passenger in an AV >> assign to network. 

 Changes to Simulate TNC Operations in the DTA 
The project team modified the DTA software platform to accommodate simulation of TNC 
operations. To accomplish this, a roster of ride-hailing trips, or client trips, is read from the ABM’s 
trip list. A fleet of TNC vehicles is also posited. Vehicles in the TNC fleet are assumed to be in 
service during various hours of the day. A TNC manager module for the DTA was implemented 
that accepts, queues, and answers ride requests from client trips and dispatches TNC vehicles to 
pre- (i.e., pickup) and post-service (i.e., after drop-off) trips. 

A preservice trip will have the TNC vehicle’s current location as the trip’s origin and the origin of 
the client trip as its destination. A service trip will share the client trip’s origin and destination. A 
TNC vehicle will become immediately available to answer a queued ride request after its service 
trip is completed, such that its post-service trip may be either the preservice trip for a new client 
or, in the event no qualifying ride request exists, a repositioning trip to a strategic location (i.e., 
where a concentration of ride requests is expected). Further, a postservice trip can be interrupted 
if the vehicle is matched to a qualifying ride request prior to arriving at the postservice trip 
destination. 

A qualifying ride request is one in which the TNC vehicle meets some criteria, including but not 
limited to a maximum travel time from the vehicle’s current location to the client trip’s origin. These 
criteria and other factors, including the size of the TNC fleet and its geographic positioning 
throughout the day, will determine various level of service variables such as wait times. 

For each TNC trip beginning with the first of the day, the nearest TNC vehicle is assigned to the 
trip. A queue of TNC vehicles is maintained with a first-in-first-out process. This means the first 
vehicle in the queue satisfying time, distance, and potentially other criteria is dispatched to serve 
a ride request. Similarly, a ride request queue is also maintained. The principal tasks of the TNC 
manager module is to match ride requests with qualifying TNC vehicles and dispatch the requisite 
preservice, service, and postservice trips. The TNC manager subscribes to notifications by the 
simulator when a trip is completed: 

 When a preservice trip is completed, the TNC vehicle will be placed in an in-service 
pool, and the client trip will be permitted to commence. In this way, the client trip’s 
identity is preserved so that its delay, travel time, and other performance variables can 
be relayed back to the ABM. 

 When a service trip is completed, the TNC manager will remove the TNC vehicle from 
the in-service pool and search the ride request queue for a qualifying ride request and 
dispatch the vehicle to service the request if one is found or dispatch the vehicle on a 
repositioning trip if one is not. If a vehicle is dispatched on a repositioning trip after 
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service, then it will be placed into the queue of available vehicles. Or, if the vehicle has 
exceeded a limit of time in service, it may be dispatched back to its home location and 
removed from the fleet. 

 When a repositioning trip is completed, the TNC vehicle will be removed from the 
network (i.e., assuming it has parked off-street) and remain in the queue of vehicles 
available to service ride requests. 

The implementation summarized above considers several travel behavior and logistical 
considerations described below: 

 Interaction Between Simulation and Travel Behavior: TNCs are expected to somewhat 
cannibalize taxi and transit trips and may also serve trips that would not have otherwise been 
made due to their hypothetical lower cost and potentially better service. Based on a set of 
initial assumptions, the ABM will generate TNC trips as a subset of all trips. Assumptions must 
be made about the number of TNC vehicles available by time of day and where they are 
initially located. Some of these assumptions should be revisited in future research as part of 
the equilibration process in the integrated ABM-DTA framework. 

 Pre- and Post-Service Trips: As previously described, each TNC service trip is likely to be 
preceded by a preservice trip and is likely to be followed by a repositioning trip or another 
preservice trip. Each of these trips is modeled with the proviso that the pre-and post-
service trips may not be necessary. For instance, a TNC trip serving a client to a destination 
with high TNC activity (e.g., an airport) may become immediately available for service of a trip 
originating at the same location. 

 Ride Request Scheduling: A probability distribution is assumed for how far in advance of 
desired service trips are scheduled in advance. The mean of this distribution could be 5 or 10 
minutes and could possibly vary with location. The ABM assigns departure times to trips 
without accounting for the waiting time at the origin. Before network simulation, the departure 
times of TNC trips are made earlier by accounting for a waiting time drawn from a probability 
distribution.  The probability distribution is such that the arrival time of the TNC vehicle at the 
client trip’s origin will generally coincide with the originally desired departure time. 

 Service Availability: In general, client trips cannot be accepted by a TNC vehicle that is on 
a preservice or service trip. Hence, client trips are serviced by the nearest vehicle that is not 
in service. From the ABM, a roster of client trips to be served by TNCs is provided as input to 
the simulation. Vehicles in the TNC fleet must be attributed some time and origin at which 
they begin service. Each TNC vehicle has an initial location prior to engaging in service, 
presumably its home location, and may be assigned a different location for the start of each 
work shift. Hence, TNC vehicles may initially travel from residential addresses to service 
locations of reasonable TNC activity (e.g., airports, hotels) at the beginning of the work shift 
prior to becoming available for service. Such an initial positioning trip may be necessary to 
place the vehicle within reasonable proximity of client trips. 
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 Verification 
The project team verified both the CAV and TNC adaptations of the DTA software. To measure 
the impact of the CAV adaptations, the project team built a small simulation model of an 
approximately 2.5-mile section of a westbound five-lane freeway with on and off ramps. The 
project team placed censors in the model on the mainline to measure the average flow per lane 
at several locations, including before vehicles arrived at the ramps and within weaving sections. 
For simplification, the verification exercise results presented here focus on the flow located in the 
map below at the orange circle, where the maximum flow rates in vehicles per hour per lane 
(VPHPL) in the model are observed. 

 

Figure 12. Model network for testing adaptations. 

The project team performed tests using an OD trip matrix with trips traveling from origins at Nodes 
1, 2, or 3 to destinations at Nodes 4 and 5. Hence, the project team tested AV and CACC 
adaptations in the presence of several complex merge, diverge, and weaving behaviors that are 
common in the real world and that call on all the aspects of driving that are subject to automation. 
The project team also set the simulated traffic in the verification exercise to have a representative 
mix of vehicle classes, including passenger cars, single-unit trucks, tractor-trailer trucks, and 
motorcycles. 

In tests, the project team first determined the highest volume of traffic that could be stably 
sustained without breakdown or notable congestion. Then, the project team increased the volume 
in increments of 10% to simulate the impacts of the adaptations at different levels of network 
congestion. For the purposes of these tests, a scaling factor of 1.0 represents an uncongested 
existing condition. The maximum stable flow condition was observed at scaling factor 1.3, where 
the maximum flow rate simulated was about 1,885 VPHPL. The project team analyzed the 
impacts of AV and CACC with scaling factors in steps of 0.1 between 1.3 and 1.8. 

The project team ran numerous scenarios, where a scenario is a combination of scaling factor 
and model adaptation. Scaling factors ranged from 1.3 to 1.8, and the following model adaptations 
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were evaluated: AV L1a (acceleration/deceleration task automated), AV L1b (lane-changing [i.e., 
modifying direction] task automated), AV L2 (both acceleration/deceleration and lane-changing 
tasks automated), AV L3 (AV L2 + travel speeds coordinated), and CACC. For each scenario, 
results from 10 simulation runs were averaged together. This test also assumed 100% AV 
penetration to analyze the maximum impact a given level of automation or AV technology might 
have. 

To isolate the effects of CACC from those of L3 automation, the project team assumed only the 
minimum AV level (L1a where the acceleration/deceleration task is automated) in the CACC 
scenarios. In the scenarios in which CACC was tested, a target following headway of one second 
was assumed, which falls in the middle of the range of CACC headways considered plausible in 
the literature. 

In the base scenario, as the scaler of the demand increased, flow declined from the maximum 
observed (1,885 vehicles per lane at a scaling factor of 1.3) because of increased congestion, 
consistent with the fundamental traffic flow diagram. Figure 13 summarizes the flow rate served 
in all the scenarios evaluated, and Figure 14 summarizes the increase in flow relative to the base 
scenario at each demand scale. 

 

Figure 13. Simulated flow rate for a range of AV adaptation/demand scale scenarios. 
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Figure 13 shows that the flow rate in the base scenario decreased as the demand increased in 
the verification exercise. This change in the flow rate reflects some combination of the downward 
trend in flow in the fundamental traffic flow diagram. This occurs as density increases beyond a 
critical density upstream of the measurement location and demand starvation occurs at the 
measurement location due to queuing at the upstream merge. 

 

Figure 14. Change in flow rate for a range of AV adaptation/demand scale scenarios. 

When automation is introduced, only modest or negligible increases in capacity (0–2%) were 
achieved when only acceleration was automated (1a) in the verification exercise (Figure 14). 
Traffic operations in heavy merge, diverge, and weaving areas stand to benefit the most from the 
automation of steering (1b). When steering (i.e., modification of direction) is automated, lane 
changes that are motivated by human factors and that are not necessary to follow one’s path are 
minimized, which enables the more notable increases in capacity (1–8%) observed at L1b, L2, 
and L3. 

Figure 14 also shows that CV technologies, like CACC, may have benefits beyond simple 
automation. The verification exercise demonstrated that the most significant improvements in 
capacity occur when CACC is deployed, producing increases in flow as high as 12%. Figure 13 
and Figure 14 also show that the benefits increase as demand increases and congestion worsens. 
Interestingly, steering automation and CACC have the potential to stem the decline in volume 
served that is evident in the base condition. 
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In sum, safety considerations aside, the benefits that CAV operations afford in terms of capacity 
may be modest or negligible with basic automation of acceleration tasks (i.e., L1a). Rather, the 
most significant improvements are likely achieved when steering is automated (i.e., unnecessary 
lane changes minimized) or when another aspect of driving, one that brings about shorter 
following headways (e.g., CACC), is enabled through these technologies. 

To verify the TNC adaptations of the DTA software, the project team performed numerous tests. 
The verification process established the suitability of the adaptation for EMA, but verification was 
not completed early enough to incorporate the TNC adaptation into the example exercise. 
Numerous variables and assumptions are critical to the simulation of TNC operations, which raise 
a host of questions about the integration of ABM and DTA not already addressed earlier in this 
document. Additionally, those variables and assumptions open doors to a whole range of EMA 
scenarios dedicated to TNC alone. To incorporate them into an EMA focused primarily on CAV 
operations would considerably increase the dimensionality of the analysis. 

Before TNC operations can be simulated, basic assumptions must be made regarding the size of 
the TNC vehicle fleet and where and when those vehicles begin servicing ride requests. TNC trip 
data were sought by the project team but could not be obtained. Researchers with similar interests 
in TNC vehicle locations and movements in urban areas have encountered similar difficulty. 
Lacking any data upon which to base TNC vehicle fleet assumptions, TNC vehicles were 
distributed throughout the region based on the concentration of TNC trips in the ABM trip lists. In 
other words, a simplifying assumption was made that TNC vehicles would begin service in areas 
where ride requests most frequently originate. 

A demand scenario with high private AV adoption and low shared AV adoption was used to test 
the TNC adaptation. Of the 655,000 trips between 5:00 a.m. and 9:00 a.m., about 92,000 are trips 
requesting a TNC ride. Initially, a fleet of approximately 2,000 vehicles was assumed. However, 
only about 12,000 of the 92,000 trips were successfully served. The low number of successful 
TNC trips are a consequence of long trips occupying TNC vehicles. Also, after dropping off riders 
in remote parts of the region, the repositioning trips were not always successful in positioning 
TNC vehicles where they could be matched to new customers.  

After increasing the size of the TNC fleet to 3,500 vehicles, about 47,000 TNC trips were 
successfully served. A fleet size of 5,000 successfully served about 58,000 TNC trips. From these 
results, it is apparent that, without deeper analysis of the TNC fleet assumptions or repositioning 
behaviors, a larger fleet than is necessary may be required to serve the demand in the simulation. 

Figure 15 depicts the status of the 2,000 TNC vehicle fleet initially tested and the clients, who, as 
of 8:00 a.m., have either requested a ride but have not yet been matched to a vehicle or are 
waiting for a vehicle that is en route. In Figure 15, the green squares represent idle vehicles in 
the TNC fleet repositioned and awaiting a rider, and the red squares represent TNC vehicles 
carrying a rider. The figure further underscores the need for additional testing to refine the fleet 
size assumptions and decision model underlying the repositioning trip. However, the verification 
exercise was successful in determining that the basic TNC operations were effective in simulating 
the core phenomena. 
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Figure 15. TNC fleet and client status at 8:00 a.m. in a selected EMA scenario. 
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6.0 Example Exploratory Model Runs and Analysis 
With the improved integrated model in place, the next step in the example exercise represents 
the core aspect of EMA—designing an experiment, running the experimental scenarios, and 
analyzing the results. 

 Experimental Design 
After the improvements, the project team developed the experimental design. Due to project 
budget and schedule constraints and the extensive runtime of the model, the project team 
restricted the input assumptions to be varied to four, testing up to three levels of each. This 
restricted set of input assumptions was largely a result of the significant runtimes required for 
DTA. The four input assumptions were as follows: 

In the ABM: 

 The level of AV ownership among households. 

 The level of paid ride-hail use and corresponding changes in auto ownership. 

In the DTA: 

 The level of allowance for AV operation (e.g., AV-only lanes). 

 The level of vehicle automation. 

The example EMA also experimented with the level of AV parking at the trip destination, but the 
project team was unable to fully incorporate this dimension of uncertainty due to complexities 
noted later. 

The project team used a fractional-factorial orthogonal design to allocate the assumption levels 
to simulation runs, as shown in Table 5. In a fractional-factorial orthogonal design, an adequate 
subset of the possible combinations of factors is selected for analysis, along with the effects of 
any one factor balancing out across the effects of the other factors. The design included 16 model 
runs of which a subset of the most interesting 5 were first run in the earlier testing phases of the 
project due to long runtimes. In the final analysis, the project team ran and analyzed all 16 
scenarios. The coding for Table 5 is as follows: 

 AV ownership each ranging from base (B) or zero ownership to low (L), medium (M), and 
high (H). 

 AV sharing (e.g., paid ride-hail service utilization) each ranging from base (B) or zero 
ownership to low (L), medium (M), and high (H). 

 Allowance for AV operation: nowhere in the network (N); anywhere in the network (A); 
exclusively in the left lanes on Interstate 10, 95, and 295 (L) (only in M and H demand 
scenarios); and exclusively on interstates within the I-295 beltway and only in the left lanes 
on interstates on and outside of the beltway (I) (only in H demand scenarios). 

 Levels of vehicle automation technology ranging from L0 to L5 and covering the spectrum 
of degree of automation according to widely accepted definitions (see Section 5.1) and 
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CV strategies like CACC. These strategies are coded 0-5 and C to represent L3 
automation and CACC. 

Table 5. Experimental design for 16 scenario runs. 

Scenario 
Private AV 
Adoption 

Shared AV 
Adoption 

Reserved AV Capacity 
Automation 

Level 
BB–N0 None None None None 

MM–L3 Medium Medium Interstate left lanes Level 3 

MM–AC Medium Medium None Level 3 + ACC 

MM–LC Medium Medium Interstate left lanes Level 3 + ACC 

MM–IC Medium Medium 
Interstate all lanes (All interstate 
lanes only inside the I 295 ring road, 
otherwise interstate left lanes only) 

Level 3 + ACC 

LH–L3 Low High Interstate left lanes Level 3 

LH–AC Low High None Level 3 + ACC 

LH–LC Low High Interstate left lanes Level 3 + ACC 

LH–IC Low High 
Interstate all lanes (All interstate 
lanes only inside the I 295 ring road, 
otherwise interstate left lanes only) 

Level 3 + ACC 

HL–L3 High Low Interstate left lanes Level 3 

HL–AC High Low None Level 3 + ACC 

HL–LC High Low Interstate left lanes Level 3 + ACC 

HL–IC High Low 
Interstate all lanes (All interstate 
lanes only inside the I 295 ring road, 
otherwise interstate left lanes only) 

Level 3 + ACC 

HH–L3 High High Interstate left lanes Level 3 

HH–AC High High None Level 3 + ACC 

HH–LC High High Interstate left lanes Level 3 + ACC 

HH–IC High High 
Interstate all lanes (All interstate 
lanes only inside the I 295 ring road, 
otherwise interstate left lanes only) 

Level 3 + ACC 

The experimental design shown in Table 5 requires 16 runs, which is a design of four demand 
combinations (LH, MM, HL, and HH) times four supply combinations (L3, AC, LC, and IC). This 
design helps compare the three AV facility allowance options (A, L, and I) in scenarios that all 
have the highest levels of automation (C). Under A, L, and I, AVs can operate anywhere on the 
network. The restrictions are that in L, non-AVs are not allowed to use the left lane of interstates, 
and in I, non-AVs are not allowed to use the interstates at all inside I-295, so it is about reserving 
existing capacity for AVs only (Figure 16). 
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Figure 16. Interstate highways I-95, I-10, and I-295. 

             Source: OpenStreeMap 

 Analysis Framework 
In this example, the outcome variables analyzed are similar to the outcome variables used in 
traditional model calibration and sensitivity testing: 

 For the overall system, these include global convergence metrics between subsequent 
iterations of the integrated ABM-DTA model. 
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 On the demand side, these include trip rates by person type, income level, purpose, time-
of-day, auto ownership/type, mode shares by auto ownership/type, trip travel times and 
distances, and vehicle miles traveled (VMT). 

 On the supply side, the simulation model can produce multiple measures of effectiveness. 
These range from local measures describing the performance of, for example, an 
intersection (e.g., queue lengths, signalized delay) to system-wide measures like overall 
VMT, vehicle hours traveled (VHT), and delay. Because the DTA model spans a region, 
the project team used the latter category of measures of effectiveness to describe the 
performance of the network under the various assumptions and modeled scenarios. In this 
example exercise, the project team used the traditional definition of delay as the difference 
between experienced travel time and free-flow travel times. 

 For the EMA, regression analysis of the scenario outcomes as a function of the input 
assumptions was also done.  

The project team summarized the example exploratory scenarios according to these key metrics: 

 Global Convergence: 

o Total numbers of trips, average trip distances, and average trip speeds. 

 Demand: 

o Trips by mode and vehicle type. 

o Average trip speeds, distances, and VMT. 

 Supply: 

o VMT, VHT, and delay, by facility type. 

o DTA visualizations. 

 Regression: 

o Vehicle-trips, average vehicle-trip distances, VMT, and vehicle-trip speed. 

o By vehicle type (conventional vehicle, private AV, shared AV). 

 Global Convergence 
Table 6 to Table 8 show the percentage changes in predicted total numbers of trips, average 
trip distances, and average trip speeds encountered between global iteration 2 and iteration 3, 
for each of the 8 half-hour AM time periods of the DTA simulation in the example. The largest 
positive changes listed are also shown in green and the largest negative changes shown in red. 
Changes in all cells are well below 1%, except for the 5:00 a.m. to 5:29 a.m. period, which has 
greater percentage variation due to a smaller number of trips in the period.  

The average speeds show some larger changes toward the later time periods, as the speeds in 
periods between 7:30 a.m. and 8:30 a.m. are the most affected by simulated congestion. These 
speeds are reported by the DaySim demand model output and are based on the travel time 
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skims produced by the TransModeler assignment in the previous iteration. Thus, the difference 
in speeds in the second and third iterations of DaySim reflects changes in the skims resulting 
from the first and second DTA iterations. The skims from the third DTA would show even 
smaller changes in experienced travel speeds. 

Table 6 to Table 8 reflect all vehicle types. A more detailed tabulation across three separate 
passenger vehicle types (non-AVs, private AVs, and shared TNC AVs) showed similar 
percentage changes between iterations 2 and 3 of the model run.  

In a production model run for a long-range plan, it would be advisable to run an additional global 
iteration to ensure that the demand and supply models have converged, even at a fairly detailed 
spatial level. For the example exploratory analysis, however, the level of convergence indicated 
in the following tables is adequate to provide confidence that differences in results across the 
scenarios are due to differences in the scenario inputs and not greatly influenced by random 
effects of nonconvergence. 
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Table 6. Change in predicted vehicle-trips, by time period from iteration 2 to iteration 3. 

Period 
5:00 a.m.– 
5:29 a.m. 

5:30 a.m.–
5:59 a.m. 

6:00 a.m.–
6:29 a.m. 

6:30 a.m.–
6:59 a.m. 

7:00 a.m.–
7:29 a.m. 

7:30 a.m.–
7:59 a.m. 

8:00 a.m.–
8:29 a.m. 

8:30 a.m.–
8:59 a.m. 

BB–N0 -0.24% -0.94% 0.20% -0.14% 0.07% -0.02% -0.07% 0.00% 

MM–L3 0.10% -0.53% -0.02% 0.07% -0.03% -0.07% -0.08% -0.04% 

MM–AC 0.03% -0.46% 0.07% 0.11% 0.16% 0.06% 0.00% 0.05% 

MM–IC 0.77% 0.45% -0.15% 0.05% 0.01% 0.04% -0.08% 0.03% 

MM–LC -0.70% -0.36% 0.12% -0.12% -0.08% -0.07% 0.24% 0.11% 

LH–L3 -0.28% 0.85% -0.19% 0.13% 0.06% -0.02% 0.06% -0.05% 

LH–AC -0.51% -0.04% -0.17% 0.07% -0.15% -0.13% 0.02% 0.07% 

LH–IC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LH–LC -0.28% 0.45% 0.01% -0.04% -0.18% 0.06% 0.19% -0.09% 

HL–L3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

HL–AC 0.21% -0.53% -0.02% -0.11% 0.16% 0.12% 0.07% 0.00% 

HL–IC -0.50% 0.51% -0.12% 0.08% -0.04% 0.28% -0.09% 0.02% 

HL–LC -0.95% 0.17% 0.10% 0.03% 0.13% -0.18% -0.11% -0.02% 

HH–L3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

HH–AC -0.01% 0.47% -0.01% 0.13% -0.08% -0.07% 0.07% 0.12% 

HH–IC 0.54% -0.20% -0.03% 0.06% -0.06% 0.08% 0.14% -0.14% 

HH–LC 0.54% 0.30% 0.05% -0.05% 0.02% 0.03% 0.23% -0.04% 
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Table 7. Change in overall predicted average trip distances from iteration 2 to iteration 3. 

Run 
5:00 a.m.– 
5:29 a.m. 

5:30 a.m.–
5:59 a.m. 

6:00 a.m.–
6:29 a.m. 

6:30 a.m.–
6:59 a.m. 

7:00 a.m.–
7:29 a.m. 

7:30 a.m.–
7:59 a.m. 

8:00 a.m.–
8:29 a.m. 

8:30 a.m.–
8:59 a.m. 

BB–N0 0.23% 0.33% 0.30% -0.29% 0.32% -0.21% 0.13% -0.13% 

MM–L3 -0.96% 0.41% -0.10% -0.19% 0.11% 0.00% -0.13% -0.13% 

MM–AC -0.43% -0.62% 0.30% 0.10% 0.00% -0.21% 0.13% 0.13% 

MM–IC 0.43% -1.03% 0.10% 0.00% 0.22% 0.00% 0.13% -0.26% 

MM–LC 0.65% -0.21% -0.10% -0.10% 0.11% 0.00% 0.00% -0.13% 

LH–L3 -0.55% 0.22% 0.00% 0.10% -0.12% -0.12% 0.28% -0.14% 

LH–AC 0.11% -1.17% 0.00% -0.10% -0.12% -0.24% 0.14% -0.14% 

LH–IC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LH–LC -0.88% 0.76% -0.11% 0.00% -0.12% 0.00% 0.14% 0.28% 

HL–L3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

HL–AC -0.31% 0.40% 0.19% 0.09% 0.10% 0.10% 0.12% 0.12% 

HL–IC 1.26% -0.30% 0.00% -0.27% 0.20% 0.00% 0.12% -0.35% 

HL–LC -0.52% -0.30% -0.19% -0.18% -0.10% -0.10% -0.23% -0.47% 

HH–L3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

HH–AC -1.28% 0.41% -0.31% 0.10% 0.23% 0.00% 0.00% 0.13% 

HH–IC 0.00% 0.21% 0.10% 0.50% -0.11% 0.11% 0.13% -0.27% 

HH–LC 0.21% -0.51% 0.10% 0.10% 0.00% -0.11% -0.13% 0.00% 
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Table 8. Change in overall predicted average trip speeds from iteration 2 to iteration 3. 

Run 
5:00 a.m.– 
5:29 a.m. 

5:30 a.m.–
5:59 a.m. 

6:00 a.m.–
6:29 a.m. 

6:30 a.m.–
6:59 a.m. 

7:00 a.m.–
7:29 a.m. 

7:30 a.m.–
7:59 a.m. 

8:00 a.m.–
8:29 a.m. 

8:30 a.m.–
8:59 a.m. 

BB–N0 0.13% -0.13% 0.09% 0.23% 0.16% 0.00% 0.24% 0.29% 

MM–L3 -0.07% 0.17% -0.31% -0.16% -0.25% -0.11% -0.70% -1.17% 

MM–AC 0.04% -0.04% 0.27% 0.44% 0.39% 0.15% -0.07% -0.13% 

MM–IC 0.26% 0.04% -0.26% 0.02% 0.34% -0.07% -0.32% -0.45% 

MM–LC 0.15% -0.11% 0.33% 0.33% 0.45% 0.49% 0.47% 0.67% 

LH–L3 -0.11% -0.11% 0.12% 0.16% 0.06% 0.73% 0.34% 0.13% 

LH–AC -0.22% 0.04% -0.19% -0.04% -0.18% -0.09% -0.13% 0.22% 

LH–IC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LH–LC -0.17% 0.07% 0.27% 0.14% 0.10% 0.64% 0.70% 0.58% 

HL–L3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

HL–AC -0.17% 0.06% 0.35% 0.16% 0.46% 0.22% 0.37% -0.09% 

HL–IC 0.17% 0.04% -0.28% -0.08% 0.13% 0.18% -0.23% -0.46% 

HL–LC -0.22% -0.11% -0.17% -0.31% -0.04% -0.51% -0.69% -1.34% 

HH–L3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

HH–AC -0.28% 0.00% 0.14% -0.14% 0.19% 0.18% 0.59% 0.21% 

HH–IC 0.15% 0.00% -0.12% -0.08% 0.04% 0.04% 0.09% -0.26% 

HH–LC 0.00% -0.04% -0.12% 0.12% 0.38% 0.28% 0.51% 0.44% 
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 Demand Model Results and Analysis 
Analysis of the demand model results is important. For the example, the project team analyzed 
trips by mode and vehicle type, distance, speed, and VMT. Figure 17 to Figure 21 summarize 
the key differences across scenarios for the final iteration. The salient findings are as follows: 

 The total number of person-trips and vehicle-trips does not vary much across scenarios. 
Figure 17 shows that a small percentage of new person-trips are generated because of 
increased accessibility with the new shared AV mode and lower value of in-vehicle time for 
AV travel. The most trips are in the HH scenarios with high penetration of both private and 
shared AVs. Figure 18 shows that the number of vehicle trips is also stable across scenarios 
and never more than a few percentage points higher than in the base scenario. Private AVs 
have somewhat higher vehicle occupancy than non-AVs, according to the model 
assumptions.  

 The effects of the scenarios on average trip distance (Figure 19) and total VMT (Figure 20) 
may seem to contradict each other at first glance. In general, shared TNC AV trips are 
shorter than private AV trips due to the higher availability in denser urban areas and the 
higher cost per mile. Compared to the medium-medium (MM) scenarios, the scenarios with 
high shared AV adoption and low private AV adoption (LH) show higher average trip 
distances for all vehicle types but lower total VMT overall. This is because more of the 
medium-distance trips are made by shared AVs, raising the average trip distance for shared 
AVs. However, those trips were shorter than average for private AVs, so having those trips 
switch to shared AVs also increases the average trip distance for private AVs. Overall, 
however, there is a much higher percentage of trips made by shared AVs, and those trips 
are still shorter on average than private AV trips, so the overall VMT declines. The results for 
switching to the high private AV, low shared AV (HL) scenarios show opposite trends. 
Average trip length decreases somewhat for all vehicle types, but the overall VMT is higher 
because more trips are made by private AV. The HL scenarios are the highest overall in 
terms of VMT and the LH scenarios are the lowest. Looking at person-miles traveled across 
all modes (Figure 21), the trends across scenarios are like those for vehicle-miles.  

 The simulation does not include zero-occupant AV trips. It is not clear if those will affect 
VMT more for TNC-based shared AVs or for private AVs, which could use remote parking or 
serve as households’ “private taxis.” 

 Relative to the variation in trips, average distance, and miles traveled (Figure 17 to Figure 
20), less variation exists across scenarios for average vehicle-trip speeds experienced in the 
network (Figure 21). The speeds for the HL scenarios are a bit lower, and the speeds for the 
HH scenarios are a bit higher.  

 For trips, average distance, and miles traveled, little variation exists for network supply 
scenarios within each demand scenario. For average trips speeds, however, the network 
scenarios appear to have a greater effect according to Figure 21. It is difficult to gauge from 
the raw tables and graphs how systematic and significant these differences are. More 
insight on the effects of the supply scenarios is obtained from the regression analysis that 
follows and from more detailed investigation of the network simulation outputs.  
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Figure 17. AM person-trips, by mode/vehicle type and scenario. 

  

Figure 18. AM vehicle-trips, by vehicle type and scenario. 
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Figure 19. AM average vehicle-trip distances, by vehicle type and scenario. 

 

Figure 20. AM VMT, by vehicle type and scenario. 
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Figure 21. AM average vehicle-trip speeds, by vehicle type and scenario. 

 Supply Model Results and Analysis 
Figure 22 through Figure 24 summarize VMT, VHT, and vehicle hours of delay (VHD), by 
scenario. In addition, because various supply scenarios restrict access to interstates or to the left 
lanes of interstate facilities, the project team also examined the VMT, VHT, and VHD metrics for 
interstates independently of arterial and local streets to confirm that any benefits that are observed 
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Figure 22. DTA VMT, by scenario. 

  

Figure 23. DTA VHT, by scenario. 
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Figure 24. DTA VHD, by scenario. 

While previous tests demonstrated that different levels of automation and CV technologies may 
lead to modest increases in operating capacity in congested traffic, the increase in auto trips that 
accompanies the higher AV adoption scenarios is likely responsible for a far greater shift in LOS 
in the opposite direction. This shift explains the increases in VMT, VHT, and VHD across the AV 
scenarios relative to the baseline demand scenario (i.e., BBN0) in the example exercise. In the 
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to reduce delay on the surface transportation system relative to the base scenario in which no 
supply strategy is applied and no AVs or CVs exist.  

These figures show that the surface transportation system generally performs better than the 
baseline condition when supply strategies and AV and CV technologies are introduced in the 
scenarios with lower rates of private auto adoption (i.e., MM and LH). However, delays are greater 
than in the baseline condition in the HL and HH scenarios, when supply strategies and AV and 
CV technologies cannot offset the increased delay likely brought about by the increases in VMT 
in the other demand scenarios. 

Additionally, the comparisons demonstrated in Figure 25 through Figure 28 suggest strongly that 
the most effective technology in reducing delay given any set of demand assumptions is C, which 
represents the highest level of automation (L3) with CACC, an outcome that is in keeping with 
expectations. Less evident a priori, however, are the relative merits of supply-side strategies, 
which are the system parameters over which transportation system operators have the most 
leverage. According to the analysis, the most effective supply strategy is I, in which AVs and CVs 
are granted exclusive use of the left lanes of interstate facilities on and outside of I-295 and of all 
lanes on interstate facilities within I-295. 

  

Figure 25. Total VHD for the MM demand assumption, varying supply and technology. 
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Figure 26. Total VHD for the LH demand assumption, varying supply and technology. 

  

Figure 27. Total VHD for the HL demand assumption, varying supply and technology. 
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Figure 28. Total VHD for the HH demand assumption, varying supply and technology. 
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L2 automation was assumed. Those scenarios also did not perform well in terms of delay, leading 
to a narrowing of the final cut of scenarios to L3 and L3 + CACC. Figure 25 through Figure 28 
may indicate that any AV or CV technologies lacking the advantages of CACC are unlikely to 
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for AV and CV. 
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operate in mixed traffic on all lanes and on all facilities (Figure 30), VHD remains generally on par 
with, or is worse than, the baseline scenario. 

 

Figure 29. Total VHD for the L3 supply assumption, varying demand. 

 

Figure 30. Total VHD for the AC supply assumption, varying demand. 
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Figure 31. Total VHD for the IC supply assumption, varying demand. 

 

Figure 32. Total VHD for the LC supply assumption, varying demand. 
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Whereas charts of model outputs help promote understanding of complex models and processes, 
simulation as a dynamic modeling tool can help interpret the analysis via animation and 
visualization. The DTA model that was used to produce the tables and charts in the example 
exercise previously described is also a time step Monte Carlo simulation in which individual 
drivers and vehicles are simulated at frequent time steps (i.e., 0.1 to 0.5 seconds). As time steps 
advance and traffic ebbs and flows, one can observe the animation of the vehicles to better 
understand traffic congestion patterns and where, how, and why certain bottlenecks form. 

Figure 33 through Figure 36 show a congested stretch of I-295 northbound west of downtown 
Jacksonville at 8:00 a.m. in various AV scenarios from the example exercise. In the images, the 
conventional vehicles are highlighted with green stars, and the remaining blue vehicles are AVs. 

In Figure 33 and Figure 34, one can see in the simulation additional evidence supporting the 
comparison between the HHIC and HHLC scenarios previously discussed. In the image of the 
HHIC scenario, the back of the queue of northbound traffic headed for downtown Jacksonville is 
notably longer than in the HHLC scenario. This visual comparison of queue lengths confirms the 
previous tables and charts that show the HHIC scenario as having the greater delay of these two 
scenarios. 
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Figure 33. Visualization of back of I-295 northbound queue in HHIC scenario. 
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Figure 34. Visualization of back of I-295 northbound queue in HHLC scenario. 
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In the images, the conventional vehicles are highlighted with green stars, and the remaining blue 
vehicles are AVs. Per Figure 33 and Figure 34, only a few conventional vehicles can be seen in 
the HH demand scenarios, but in other scenarios, one may observe greater interactions between 
AVs and conventional vehicles. Figure 35 and Figure 36 show simulations of the HLL3 and MML3 
scenarios at the same location on I-295. In the images, the greater number of conventional 
vehicles is evident. 

 

Figure 35. Visualization of back of I-295 northbound queue in HLL3 scenario. 
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Figure 36. Visualization of back of I-295 Northbound queue in MML3 scenario. 

 Regression Analysis 
One of the key methodological components of EMA is to use an experimental design in 
specifying the simulated scenarios. This facilitates independent analysis of the effect of each set 
of assumptions. This experiment completed the regression analysis of the scenario outcomes 
as a function of the input assumptions.  
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Table 9 through Table 16 show the results of regression analysis of the outcomes in terms of 
vehicle-trips, average vehicle-trip distances, overall VMT, and average vehicle-trip speeds. 
Each model is estimated separately by vehicle type (non-AV, private AV, and shared TNC AV), 
and then totaled across all three passenger vehicle types (not including commercial vehicles). 
The base non-AV scenario is not included in the regressions—only the 16 AV-related scenarios. 
For each model, there are 16 scenarios times 8 half-hour time periods—or 128 data points as 
observations.  

The overall findings from the regression models, which generally reinforce the findings from the 
previous section, include the following: 

 The model fit, in terms of R-squared is high for all models, indicating that the differences in 
the outcomes between scenarios are due to the differences in inputs, with relatively 
negligible effect of random variation or nonconvergence. 

 The effects of the demand scenarios on total trips, average distances, and VMT are 
significant and align with previously articulated findings.  

 The effects of time periods show fewer trips during the early AM periods, as one would 
expect. Also, the trips arriving after 8:00 a.m. tend to be shorter distance.  

 For vehicle speeds, the low private AV, high shared AV scenarios have somewhat higher 
average speeds, with somewhat less congestion due to the lower VMT on the network in 
these scenarios. Although the difference is statistically significant, it is somewhat less than 1 
mph versus an average of around 40 mph, so a difference of approximately 2%. However, 
an average speed difference of 2% for the entire regional network may translate to large 
differences in congestion levels and speeds for specific areas, links, and intersections. 

 The results for average vehicle speed and arrival time period indicate that average speeds 
are higher for trips made before 8:00 a.m. This may be because these trips are longer 
distance on average and spend a smaller proportion of travel time on minor arterials and 
local streets. Also, traffic congestion often accumulates over time, so the period after 8:00 
a.m. has somewhat higher congestion levels. 

 The supply scenarios show no significant effects on total trips, average distances, or VMT. 
For average speeds, however, some significant differences exist. The IC scenarios with all 
lanes of the interstate inside I-295 converted to AV only have significantly lower average 
speeds—approximately 2% lower. The effect is not just for non-AVs, but for all vehicle types.  

More detailed analysis of the network simulation outputs using the detailed path trajectories 
rather than the skims, however, shows a different result for the average speeds and delays, with 
the IC and LC scenarios resulting in fewer delays and slightly higher average speeds. This 
discrepancy suggests that the ABM trip output files should be used to analyze demand effects 
(trips, distances, VMT), while the DTA trip output files should be used to analyze network effects 
(speeds, delays, VHT). It also suggests that additional research is required to fully understand 
any remaining differences in skimmed travel times versus trajectory travel times.
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Table 9. Regression model for number of trips, by scenario/time period/vehicle type. 

Vehicle Type Non-AV Non-AV Private AV Private AV 
Shared 

AV 
Shared 

AV All Types 
All 

Types 

Variables Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat 

Constant 0.286 13.3 0.425 10.4 0.487 16.0 1.198 200.0 

Demand—High Private, Low Shared -0.168 -10.3 0.358 11.6 -0.177 -7.7 0.013 2.9 

Demand—Low Private, High Shared 0.077 4.7 -0.238 -7.7 0.159 6.9 -0.002 -0.4 

Demand—High Private, High Shared -0.190 -11.6 0.057 1.8 0.177 7.7 0.044 9.8 

Supply—Network Scenario AC 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 

Supply—Network Scenario IC -0.001 -0.1 0.000 0.0 0.000 0.0 -0.001 -0.2 

Supply—Network Scenario LC 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.1 

Arrive Period—5:00 a.m. to 5:29 a.m. -0.198 -8.6 -0.428 -9.8 -0.499 -15.3 -1.125 -175.7 

Arrive Period—5:30 a.m. to 5:59 a.m. -0.195 -8.5 -0.419 -9.6 -0.490 -15.0 -1.104 -172.4 

Arrive Period—6:00 a.m. to 6:29 a.m. -0.091 -3.9 -0.173 -4.0 -0.250 -7.7 -0.513 -80.2 

Arrive Period—6:30 a.m. to 6:59 a.m. -0.099 -4.3 -0.194 -4.5 -0.266 -8.1 -0.559 -87.2 

Arrive Period—7:00 a.m. to 7:29 a.m. -0.005 -0.2 0.023 0.5 0.009 0.3 0.027 4.2 

Arrive Period—7:30 a.m. to 7:59 a.m. -0.028 -1.2 -0.037 -0.8 -0.042 -1.3 -0.107 -16.8 

Arrive Period—8:30 a.m. to 8:59 a.m. -0.018 -0.8 -0.047 -1.1 -0.046 -1.4 -0.110 -17.2 

Table 10. Number of trips, by scenario/time period/vehicle type model fit. 

Model Fit 
Observations 

(16 scenarios * 
8 time periods) 

R-squared 

Non-AV Only 128 0.829 

Private AV Only 128 0.844 

Shared AV Only 128 0.887 

All Three Types 128 0.999 
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Table 11. Regression model for average trip distance, by scenario/time period/vehicle type. 

Vehicle Type Non-AV Non-AV Private AV 
Private 

AV 
Shared 

AV 
Shared 

AV All Types All Types 

Variables Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat 

Constant 8.689 145.5 10.745 175.1 4.627 109.0 7.794 132.3 

Demand—High Private, Low Shared -1.358 -30.1 -1.241 -26.8 -0.820 -25.6 0.614 13.8 

Demand—Low Private, High Shared 1.319 29.2 1.399 30.2 0.573 17.9 -0.616 -13.8 

Demand—High Private, High Shared 0.164 3.6 0.551 11.9 0.458 14.3 -0.289 -6.5 

Supply—Network Scenario AC 0.004 0.1 -0.040 -0.9 -0.002 -0.1 0.002 0.0 

Supply—Network Scenario IC -0.078 -1.7 -0.065 -1.4 -0.004 -0.1 -0.038 -0.8 

Supply—Network Scenario LC 0.005 0.1 -0.022 -0.5 -0.005 -0.2 -0.003 -0.1 

Arrive Period—5:00 a.m. to 5:29 a.m. 1.348 21.1 0.468 7.1 1.451 32.0 1.641 26.1 

Arrive Period—5:30 a.m. to 5:59 a.m. 1.878 29.4 0.909 13.9 1.539 33.9 1.923 30.5 

Arrive Period—6:00 a.m. to 6:29 a.m. 2.676 41.9 2.224 33.9 1.555 34.3 2.281 36.2 

Arrive Period—6:30 a.m. to 6:59 a.m. 2.859 44.8 2.593 39.5 1.758 38.7 2.544 40.4 

Arrive Period—7:00 a.m. to 7:29 a.m. 1.784 27.9 1.758 26.8 0.803 17.7 1.384 22.0 

Arrive Period—7:30 a.m. to 7:59 a.m. 1.695 26.5 1.826 27.8 0.910 20.0 1.442 22.9 

Arrive Period—8:30 a.m. to 8:59 a.m. -0.063 -1.0 -0.022 -0.3 0.091 2.0 0.020 0.3 

Table 12. Average trip distance, by scenario/time period/vehicle type model fit. 

Model Fit 
Observations 

(16 scenarios * 
8 time periods) 

R-
squared 

Non-AV Only 128 0.985 

Private AV Only 128 0.983 

Shared AV Only 128 0.980 

All Three Types 128 0.972 
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Table 13. Regression model for VMT, by scenario/time period/vehicle type. 

Vehicle Type Non-AV Non-AV 
Private 

AV 
Private 

AV 
Shared 

AV 
Shared 

AV All Types All Types 

Variables Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat 

Constant 0.262 11.1 0.443 10.6 0.226 12.9 0.931 117.6 

Demand—High Private, Low Shared -0.174 -9.8 0.346 11.0 -0.103 -7.8 0.068 11.4 

Demand—Low Private, High Shared 0.116 6.5 -0.281 -8.9 0.108 8.1 -0.057 -9.6 

Demand—High Private, High Shared -0.190 -10.6 0.083 2.6 0.113 8.5 0.006 1.1 

Supply—Network Scenario AC 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 

Supply—Network Scenario IC -0.002 -0.1 -0.002 -0.1 0.000 0.0 -0.004 -0.7 

Supply—Network Scenario LC 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.1 

Arrive Period—5:00 a.m. to 5:29 a.m. -0.182 -7.2 -0.434 -9.7 -0.237 -12.7 -0.853 -100.7 

Arrive Period—5:30 a.m. to 5:59 a.m. -0.177 -7.0 -0.422 -9.5 -0.231 -12.3 -0.830 -98.1 

Arrive Period—6:00 a.m. to 6:29 a.m. -0.051 -2.0 -0.109 -2.5 -0.075 -4.0 -0.235 -27.8 

Arrive Period—6:30 a.m. to 6:59 a.m. -0.057 -2.3 -0.125 -2.8 -0.081 -4.3 -0.263 -31.1 

Arrive Period—7:00 a.m. to 7:29 a.m. 0.035 1.4 0.107 2.4 0.051 2.7 0.192 22.7 

Arrive Period—7:30 a.m. to 7:59 a.m. 0.008 0.3 0.042 0.9 0.026 1.4 0.076 9.0 

Arrive Period—8:30 a.m. to 8:59 a.m. -0.017 -0.7 -0.048 -1.1 -0.018 -1.0 -0.083 -9.8 

Table 14. VMT, by scenario/time period/vehicle type model fit. 

Model Fit 
Observations 

(16 scenarios * 
8 time periods) 

R-
squared 

Non-AV Only 128 0.829 

Private AV Only 128 0.858 

Shared AV Only 128 0.881 

All Three Types 128 0.996 
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Table 15. Regression model for average trip speed, by scenario/time period/vehicle type. 

Vehicle Type Non-AV Non-AV 
Private 

AV 
Private 

AV 
Shared 

AV 
Shared 

AV All Types All Types 

Variables Coeff. T-stat Coeff. T-stat Coeff. T-stat Coeff. T-stat 
Constant 47.584 195.3 45.451 289.6 40.150 240.1 44.353 286.8 

Demand—High Private, Low Shared -0.583 -3.2 -0.526 -4.4 -0.768 -6.1 -0.050 -0.4 

Demand—Low Private, High Shared 0.456 2.5 0.362 3.1 0.738 5.8 -0.092 -0.8 

Demand—High Private, High Shared 1.589 8.6 0.171 1.4 0.005 0.0 -0.708 -6.1 

Supply—Network Scenario AC -0.099 -0.5 -0.130 -1.1 -0.195 -1.5 -0.148 -1.3 

Supply—Network Scenario IC -0.861 -4.7 -0.925 -7.8 -1.129 -8.9 -0.952 -8.1 

Supply—Network Scenario LC 0.123 0.7 0.135 1.1 0.219 1.7 0.163 1.4 

Arrive Period—5:00 a.m. to 5:29 a.m. -2.006 -7.7 1.288 7.7 4.649 26.0 2.022 12.2 

Arrive Period—5:30 a.m. to 5:59 a.m. -1.618 -6.2 1.570 9.4 4.791 26.8 2.279 13.8 

Arrive Period—6:00 a.m. to 6:29 a.m. 5.457 20.9 7.217 43.0 8.292 46.4 7.549 45.7 

Arrive Period—6:30 a.m. to 6:59 a.m. 4.076 15.6 5.644 33.6 7.334 41.0 6.159 37.3 

Arrive Period—7:00 a.m. to 7:29 a.m. 3.039 11.7 3.986 23.8 4.809 26.9 4.223 25.5 

Arrive Period—7:30 a.m. to 7:59 a.m. 0.954 3.7 1.879 11.2 3.461 19.4 2.272 13.7 

Arrive Period—8:30 a.m. to 8:59 a.m. 0.114 0.4 0.237 1.4 -0.046 -0.3 0.111 0.7 

Table 16. Average trip speed, by scenario/time period/vehicle type model fit. 

Model Fit 
Observations 

(16 scenarios * 
8 time periods)

R-
squared 

Non-AV Only 128 0.936 

Private AV Only 128 0.969 

Shared AV Only 128 0.974 

All Three Types 128 0.972 
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7.0 Conclusions and Future Areas of Research  
This report describes the process of integrating an ABM with a DTA for the region of Jacksonville, 
Florida, to understand the potential impacts of CAVs and ride-hailing. It also outlines an example 
analysis conducted by the project team. This demonstration is a preliminary investigation leading 
to the next phase’s full EMA process, which is different from typical scenario analysis in that it is 
designed to handle many uncertain model relationships and inputs. While a standard scenario 
analysis may vary some of the model inputs (e.g., future population growth and income levels), 
EMA is more appropriate in a future context where even the fundamental relationships or 
parameters of the model may be in question. Such a context is a “disruptive” technology like 
CAVs. 

 The Project Contribution 
While the example did successfully demonstrate the main components of EMA, this project’s key 
contribution is in ABM-DTA integration. To comprehensively investigate the impacts of CAVs and 
ride-hailing on the regional transportation system, an integrated ABM-DTA model is required. 
These disaggregate models are better able to model the complex relationships between individual 
persons (including drivers and passengers), individual vehicles (CAV or not), and a network that 
supports vehicle communication (V2V, V2I, V2X). Even though ABM-DTA models require 
significant resources and runtime, the example exercise helped convince the project team they 
are a step in the right direction and continue to be a promising area of research. The exercise 
also demonstrated to the project team that it is essential to vet the integrated system, like what 
was done for the dynamic skims analysis. 

Unlike other attempts at ABM-DTA integration in practice and in the research, this example 
integrates the ABM with a microscopic simulation-based DTA. Despite the obstacles encountered, 
it has been one of the most successful integrated models developed in the industry and uses 
components that were already calibrated and deployed for use at the MPO level. Not only does 
the microscopic simulation model lend itself to representing CAVs, but it also provides a much 
more accurate representation of traffic than is possible in a mesoscopic model. Mesoscopic 
models are a popular choice for ABM-DTA integration, but these models lack lane-level details 
and represent traffic signals in approximate fashion only. The convergence of DTA models, 
especially mesoscopic models, has typically also been problematic, so it is noteworthy that it 
appears that not only does the microscopic DTA in this EMA exercise converge well in 
Jacksonville, but also that the entire ABM-DTA model seems to be convergent after the requisite 
computation time.  

 Lessons Learned 
The first major effort in this example exercise was to strengthen the integration of the DaySim 
ABM and the TransModeler DTA, both of which had already been implemented in Jacksonville, 
Florida. As part of this work, the project team enhanced the feedback between DaySim and 
TransModeler in several important ways: 
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 The DaySim trip outputs included a new mode (paid ride-hail) and a new level for the 
driver or passenger attribute (passenger in an AV or no passenger at all). The project team 
also updated DaySim to allow for separate skims for AVs since TransModeler models the 
AVs as a separate “user class.” AV parking at the trip destination was also an area of 
experimentation. 

 Production of dynamic skims. As discussed throughout this report, this was an especially 
difficult part of the example exercise due to several DTA modeling challenges, including 
long runtimes, network entrance and exit (i.e., loading point) issues, inconsistency in 
approaches to generating skimmed travel times, and heavy congestion (i.e., gridlock). 
Ultimately, the project team produced and verified a solid set of dynamic skims via this 
exercise.  

 Initially, the ABM and DTA both operated at the parcel level. However, to produce skims 
at the TAZ level, the project team modified the DTA to simulate trips at the TAZ level and 
to facilitate integration. This inconsistency led to the issues discussed earlier, and as a 
result, the project team decided to try complete microzone-level integration (i.e., the DTA 
produces microzone-to-microzone dynamic skims that are also input to the ABM at the 
microzone-to-microzone level). Although this exercise was not fully completed, it appears 
to be a promising approach to integration since it is a good balance between spatial detail 
and computational requirements. 

The second major example exercise effort focused on adapting the ABM and DTA models to 
accommodate key dimensions of uncertainty in the context of CAVs. This work has made possible 
modeling of the following system input and parameter assumptions: 

 The level of AV ownership among households. 

 The level of paid ride-hail use and corresponding changes in auto ownership. 

 The level of network allowance for AV operation (e.g., AV-only lanes). 

 The level of vehicle automation. 

The project team developed a fractional-factorial experimental design to allow for the analysis of 
the independent effect of each level of each assumption. For example, the 4 different assumptions 
listed above were accommodated using an experimental design with 16 runs. 

 Key Findings on the Impacts of CAVs 
The example exercise suggests the transportation system performs best when CAVs are not 
present because of increases in VMT that appear to be a consequence of CAVs for both the 
interstate and arterial systems. For the most part, there is currently no differentiation in the 
transportation system for different types of users in the context of CAVs. The introduction of new 
types of users like CAVs, which have the potential to use the system more efficiently, only 
becomes significant once their market saturation exceeds a certain threshold. In addition, 
repurposing some of the existing system for a minority-share user likely comes at the cost of the 
majority-share user, which likely also reduces overall system performance. Conversely, many of 
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the purported benefits of CAVs, like in-vehicle passenger productivity (due to not driving), safety, 
and reliability, are not captured in this model framework. 

Nevertheless, the work to date demonstrates the need for a full EMA process to support more 
comprehensive conclusions. The initial work compared the performance of each scenario to 
BBN0 as a baseline, but there are enough extra trips in the MM, LH, HH, and other trip tables that 
it is not possible to tell whether a supply strategy or technology will provide any benefits relative 
to a BB scenario. If the delay increases, it may simply be a consequence of the change in trip-
making. Additional model runs—combining the most interesting demand scenarios with different 
supply scenarios—may help better understand this issue. 

 Recommendations for Future Areas of Research 
A priority area for future research is to improve the integrated ABM-DTA model and improve its 
ease of use for an EMA process. Long runtimes and artificial congestion due to various ABM-DTA 
integration and network simulation issues will continue to delay research in this area if not 
satisfactorily resolved. For the example integrated model, the following issues remain unresolved: 

 Fully reconciling the spatial resolution at which trips are loaded in the DTA with the spatial 
resolution of the skims leveraged in the ABM. 

 Cleaning up any remaining network, zone connector abstraction, intersection geometry, 
and signal timing issues that create artificial congestion. 

 Possibly moving to a future-year scenario to experience more congestion, which may 
result in greater benefits from CAVs. However, this may be difficult as demand forecasts 
may be unrealistically related to supply, or vice versa. 

 Refreshing the calibration of the ABM consistent with the dynamic skims from the DTA 
and with Google-reported dynamic travel times. 

Once the example integrated ABM-DTA model is more reliable and easier-to-use, work can focus 
on revisions to the key areas of uncertainty with respect to CAVs. These issues include the 
following: 

 Model vehicle-sharing behavior and empty vehicles in more detail and more thoroughly 
address parking options. On the demand side, these changes could include representing 
different assumptions regarding the following: 

o Changes in intrahousehold ride-hailing/chauffeuring behavior due to AV ownership 
(and associated changes in the generation of empty vehicle trips). For example, 
an AV may drop off a household commuter then return home empty to be available 
for any nonworkers until it must pick up the commuter at the end of the work day. 

o These household decisions should also reflect parking availability for AVs at the 
destinations as that may influence the relative attractiveness of returning home. 

 On the network side, these changes may include being able to represent different 
assumptions regarding the following: 
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o The way in which paid ride-hailing services size their fleet and the way such 
services route and locate vehicles when empty. While it would be difficult to model 
an “optimal” system, some reasonably efficient behavior should be possible to 
simulate. This would influence the typical passenger wait times that are passed to 
DaySim. 

o Different treatment of empty vehicle trips on the network. For example, empty 
CAVs could be prohibited from using congested facilities during peak periods. 

o The location and supply of parking, including superstacked or remote parking for 
CAVs. 



Model Impacts of Connected and Autonomous/Automated Vehicles (CAVs) and  
Ride-Hailing with an Activity-Based Model (ABM) and Dynamic Traffic Assignment (DTA)—An Experiment 

April 2018  70  

8.0 References 
Bradley, M., Bowman, J., and B. Griesenbeck. (2009). SACSIM: An applied activity-based 
model system with fine-level spatial and temporal resolution. Journal of Choice Modeling, Vol. 3, 
No. 1, pp. 5-31. 

Caliper Corporation (2015). Traffic Assignment and Feedback Research to Support Improved 
Travel Forecasting. Final Report Prepared for the Federal Transit Administration Office of 
Planning and Environment. Newton, MA. 

Caliper Corporation (2013). TransModeler Dynamic Traffic Assignment Model for NERPM ABM. 
Report prepared for the North Florida TPO and HNTB. Newton, MA. 

Caliper Corporation (2018). https://www.caliper.com/transmodeler. 

Dewar, James A., and Martin Wachs. (2008) “Transportation planning, climate change, and 
decision-making under uncertainty”. Transportation Research Board. 

Lempert, R.J., S.W. Popper and S.C. Bankes (2003). “Shaping the Next One Hundred Years: 
New Methods for Quantitative, Long-Term Policy Analysis”. RAND Corporation. 

Morgan, D., Yang, Q., and H. Slavin. (2015). “Simulation-based Dynamic Traffic Assignment for 
Planning Applications.” Presentation to the North Carolina DOT Model Users’ Group. November 
19, 2015. 

North Florida Transportation Planning Organization. (2016). Northeast Regional Planning 
Model: Activity-based: Technical Report #4: Calibration and Validation. 

RSG. (2018). DaySim. https://github.com/rsginc/daysim. 

Strategic Highway Research Program. (2013). “SHRP 2 Report S2-C04-RW-1: Improving our 
Understanding of How Highway Congestion and Pricing Affect Travel Demand.” Transportation 
Research Board, Washington, DC. 

Strategic Highway Research Program. (2014). “SHRP 2 Report S2-C10A-RW-1: Dynamic, 
Integrated Model System: Jacksonville Area Application.” Transportation Research Board. 
Washington, DC. 

Wang, J., and R. Rajamani. (2004) “Should Adaptive Cruise-Control Systems be Designed to 
Maintain a Constant Time Gap Between Vehicles?” IEEE Transactions on Vehicular 
Technology, Vol. 53, No. 5, pp. 1480-1490. 

Yang, Q., R. Balakrishna, D. Morgan and H. Slavin. (2017). “Large-Scale, High-Fidelity Dynamic 
Traffic Assignment: Framework and Real-World Case Studies.” Transportation Research 
Procedia, Vol. 25, pp. 1290-1299. 

  



 

 

NOTICE 

This document is disseminated under the sponsorship of the U.S. Department of Transportation 
in the interest of information exchange. The United State Government assumes no liability for its 
contents or use thereof. 

The United States Government does not endorse manufacturers or products. Trade names 
appear in the document only because they are essential to the content of the report. 

The opinions expressed in this report belong to the authors and do not constitute an 
endorsement or recommendation by FHWA. 

This report is being distributed through the Travel Model Improvement Program (TMIP). 

 



 

 

 

U.S. Department of Transportation 
Federal Highway Administration 
Office of Planning, Environment, and Realty 
1200 New Jersey Avenue, SE 
Washington, DC 20590 

April 2018 

FHWA-HEP-081 

 


