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1.0  Introduction 
1.1 Disclaimer 

The views expressed in this document do not represent the opinions of FHWA and do not 
constitute an endorsement, recommendation or specification by FHWA.  

1.2 Introduction 
The purpose of this project was to demonstrate the concepts of Exploratory Modeling and 
Analysis (EMA) in the context of the transition to connected vehicle (CV) and autonomous vehicle 
(AV) technology. The proposed methodology was to integrate an activity-based model (ABM) with 
dynamic traffic assignment (DTA) in the Jacksonville, FL region, introducing new features in the 
models to reflect specific assumptions regarding the demand and network supply for CV/AV. 
Phase 1 of the research was designed to demonstrate the feasibility and usefulness of the 
approach, while Phase 2 will extend the research to a more complete exploratory scenario 
analysis. The tasks for Phase 1 were to: 

• Set up and test the integration of the ABM and DTA model systems for the base 
scenario. 

• Adapt the ABM and DTA models to accommodate key selected dimensions of 
uncertainty in the context of AVs. 

• Perform the Phase 1 exploratory runs and report the results. 

• Prepare a work plan for the Phase 2 EMA. 

It is important to keep in mind that the main objective of Phase 1 was to assess the 
reasonableness of an integrated ABM-DTA approach for EMA applications, particularly in 
scenario planning to support transportation planning decision-making. 

1.3 Steps in the Exploratory Modeling and Analysis Approach 
Even though the word “exploratory” may connote an ad-hoc type of approach, EMA is a structured 
methodology for investigating future scenarios in which there are many different sources of 
uncertainty. The main steps in the approach are: 

1. Define and select the key sources of uncertainty that will be used as input assumption, 
and the levels of each to be tested. (See Setup and Test the Integration of the ABM and 
DTA Model Systems for the Base Scenario) 

2. Design the analytic model framework that will be used to simulate scenarios, ensuring that 
it can represent each of the selected input assumptions. (See Setup and Test the 
Integration of the ABM and DTA Model Systems for the Base Scenario and Adaptation of 
the ABM and DTA Models to Accommodate Key Dimensions of Uncertainty in the Context 
of ) 

3. Create an experimental design so that the influence of each level of the various input 
assumptions on the simulated scenario outcomes can be analyzed efficiently, without 
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simulating every possible combination of inputs. (See Perform the Phase 1 Exploratory 
Runs and Report the Results) 

4. Select the scenario outcomes to be evaluated, and what metrics and analysis methods 
will be used to evaluate them. (See Perform the Phase 1 Exploratory Runs and Report the 
Results) 

5. Implement and test the analytic model framework, testing the reasonableness in terms of 
reproducing the current situation and representing key types of sensitivities, including the 
sensitivities to the selected sources of uncertainty. (See Setup and Test the Integration of 
the ABM and DTA Model Systems for the Base Scenario and Adaptation of the ABM and 
DTA Models to Accommodate Key Dimensions of Uncertainty in the Context of ) 

6. Carry out the scenario simulation runs specified in the experimental design. (See Perform 
the Phase 1 Exploratory Runs and Report the Results) 

7. Analyze the selected scenario outcomes as a function of the input assumptions, and 
communicate the results to aid in understanding the relative importance of the key sources 
of uncertainty. (See Perform the Phase 1 Exploratory Runs and Report the Results) 

8. Evaluate the findings and how they could be extended or enhanced through further EMA. 
(See Summary of Phase 1 Approach and Phase 2 Priorities)
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2.0 Setup and Test the Integration of the ABM and DTA Model 
Systems for the Base Scenario 

This section describes the work completed under Task 3 of the work plan. Task 3 involved setting 
up and running the DaySim ABM with the TransModeler DTA, in an integrated fashion, for the 
base scenario. Three subsections describe the integrated model setup and the analysis of the 
results and a discussion of the issues, challenges, and next steps. Before describing each section 
in detail, a summary introduction is provided below. 

2.1 Background 
The DaySim ABM framework and software were first developed for the Sacramento Council of 
Governments (Bradley, et al., 2009), extending the model framework that had been applied 
previously in Portland and San Francisco. The DaySim model was first applied in the Jacksonville 
region in 2012 for the Strategic Highway Research Program SHRP2 C10A project (Strategic 
Highway Research Program, 2014) to demonstrate the integration of ABMs with DTA. In that 
project, DaySim was integrated with the TRANSIMS network assignment model.1 

Shortly after the SHRP2 C10A project was completed, a project was funded by Florida 
Department of Transportation to use DaySim as the regional planning model in both the 
Jacksonville and Tampa regions. In these two implementations, DaySim is integrated with Cube, 
and, to conform to the current state of the practice, static traffic assignment is used rather than 
DTA. In Jacksonville, the North Florida Transportation Planning Organization (NFTPO) has 
adopted DaySim as the model for project planning (NFTPO, 2016). 

The Jacksonville ABM operates at the individual parcel level for land-use variables and spatial 
choice models, while the auto and transit networks are represented at the zonal level, with roughly 
2,500 zones in the region. The DaySim models use 30-minute time periods for simulation and 
interpolate to predict the starting and ending time for each activity down to the minute. The 
highway and transit assignments and skims, however, only treat five different periods of day (AM 
peak, midday, p.m. peak, evening, and night). Using DTA rather than static assignment leverages 
the spatial and temporal detail that can be provided by the activity-based demand simulation. 

The DaySim software is open source and is maintained in a GitHub repository.2 It includes a 
regression-testing system that coordinates across changes made for several different client 
agencies, ensuring that a change made for one user does not introduce unanticipated changes 
for other users. DaySim is written in C# for the Windows .NET platform, and supports 
multithreading. Currently, on a standard workstation with four cores, DaySim requires around 60 
minutes to simulate weekday travel for the roughly two million residents of the Jacksonville region. 
Memory required for the Jacksonville region is less than 8 GB of RAM. 

As mentioned above, the model is currently integrated with Cube, which performs auto and transit 
network assignment and skimming of zone-to-zone time and cost matrices. The scripts for running 

                                                           
1 Strategic Highway Research Program, Transportation Research Board, Dynamic, Integrated Model System: Jacksonville-Area 
Application 
2 GitHub, RSGInc/DaySim Activity-Based Model 

https://planningtools.transportation.org/files/106.pdf
https://planningtools.transportation.org/files/106.pdf
https://github.com/rsginc/daysim
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the nonresident market components (freight, external trips, visitors, and airport travel) are also 
implemented in Cube using a zonal trip-based framework. These models and traffic assignment 
are run for three or four global iterations with the DaySim resident demand simulation. The Cube-
based model components require a significant fraction of the run time for the entire model system. 

The TransModeler DTA software was implemented in the Jacksonville region, dynamically 
assigning the trips output by the existing NFTPO ABM (Morgan, et al., 2015). The TransModeler 
DTA encompasses the whole regional planning network and runs microscopically.3 It could also 
be run in a mesoscopic mode for speed improvements and possibly as an alternative means of 
generating travel time skims. 

2.2 Integrating DaySim with TransModeler: The Conceptual Design 
The conceptual design behind integrating DaySim with TransModeler in Jacksonville is that 
DaySim provides the demand (a list of trips) for TransModeler to simulate on the network, and 
TransModeler provides congested travel times back to DaySim to use in simulating demand for 
the next iteration. The demand simulation and network simulation run iteratively until an 
acceptable level of stability is reached. This conceptual framework is not fundamentally different 
from what is currently used for the integration of DaySim with static assignment using Cube or 
TransCAD.4 The main differences are that the TransModeler simulation framework is not limited 
to a specific zone system or broad time periods for traffic assignment, so this opens more options 
for integration (as discussed below). The traffic simulation can take advantage of the spatial and 
temporal detail produced by the demand simulation and can also model link delays and 
intersection delays much more realistically than is possible in static zone-to-zone assignment 
methods. 

2.2.1 Specific Integration Issues 
The following integration issues were considered under Phase 1: 

1. The level of spatial detail used in the ABM: The default here is to use the existing 
NFTPO zone system, with roughly 2,500 zones. Underlying the zone system is parcel 
geography, which is used for the location choice models. The travel time and cost for 
intrazonal trips and other short-distance trips are also adjusted based on the shortest 
distance path between parcels on an all-streets network. With this short-distance 
adjustment it may not be necessary to use a more detailed zone system to get the benefit 
of using DTA-based travel times. However, it would be possible to use a more detailed 
zone system if it integrated effectively with the DTA. 

2. The level of temporal detail used in the ABM: The ABM currently uses 30-minute time 
periods as the choice alternatives in the tour and trip scheduling models. When each trip 
is simulated, a specific departure minute is selected at random from the available time 
window within the chosen 30-minute period. This means that the trip timing could be 

                                                           
3 TransModeler Dynamic Traffic Assignment Model for NERPM ABM 
4 Caliper, 2016. Technical Notes on the TransCAD Conversion of Jacksonville CUBE Travel Demand Model, 
Jacksonville Model Conversion. 

http://www.caliper.com/Press/TransportationLibrary.htm
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adjusted somewhat within the DTA without becoming inconsistent with the simulated 
choices from the ABM. If one wishes to maintain consistency across trips in a tour, 
however, adjusting the timing of one trip on a tour may necessitate retiming other trips on 
the tour as well. (See further discussion below.) It is easy to change the length of the time 
periods used as choice alternatives used in DaySim, so it would be possible to use 15-
minute periods rather than 30-minute periods, for example. There would be little benefit in 
doing so, however, unless the travel time information passed back from the DTA is also 
more detailed than 30 minutes. (See further discussion below.) 

3. The level of spatial detail used in the DTA: The spatial detail in the TransModeler 
simulation is at the parcel level to match the level of spatial detail in the DaySim model 
output. The TransModeler simulation could be made to work with larger spatial units with 
some additional effort, but there is no advantage in doing so for this application. 

4. The level of temporal detail used in the DTA: The TransModeler simulation updates 
each vehicle every 0.1 seconds but uses 15-minute intervals for the route choices for trips. 
This is a reasonable temporal granularity for regional DTA nd matches well with the level 
of temporal detail in the ABM. 

5. The method of passing travel time information from the DTA back to the ABM: This 
is the main aspect of integrating DaySim and TransModeler that remained to be 
implemented for this project. The DaySim software is designed to use zone-to-zone skims 
for its choice models. Dynamic skims could be created in several different ways. One 
approach, which may be best for the base-year calibration, is to use observed travel times 
from HERE, INRIX, or Google data to create accurate base-year origin-destination (OD) 
travel time matrices. These OD skims could subsequently be updated using simulation 
results. Dynamic shortest path calculations in both TransCAD and TransModeler are fully 
multithreaded and can be done quickly on a suitable computer. It is possible to store best 
path sets for each OD pair and use them to accelerate the computation of skims. 

This project focused on testing ABM-DTA integration for scenario analysis rather than on 
developing completely new methods for integration. As a result, the project used the 
fastest and most straightforward method that produces reasonably accurate reflections of 
the simulated travel times in the DTA. The proposed method was to first create base-year 
OD travel time matrices based on observed data to use in the initial calibration and 
reasonableness tests, and then run tests to determine the best method for creating 
dynamic skims in TransModeler to feed back to DaySim. 

6. The time periods used to run the DTA and create travel time skims: In Jacksonville, 
there is little congestion in the evening and night hours. Thus, for the purposes of this 
project, TransModeler was to be run for the AM peak, midday, and p.m. peak periods. If 
travel time skims are created for each 30-minute period, then this requires writing and 
reading matrices for 26 different time periods. A free-flow, uncongested travel time skim 
can be used to represent the remaining periods from 7:00 p.m. to 6:00 a.m. (DaySim also 
uses auto distance and toll cost matrices. Because those variables are much less 
congestion-sensitive than travel time, and less important in terms of choice utilities, it is 
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not worth the added memory requirements to produce auto distance and toll skims for 
every 30-minute time period, so fewer periods can be used for those skim matrices.) 

7. The different user classes for skim matrices, and the treatment of nonresident 
travel: In addition to creating different travel time skims by time-of-day, it is also important 
to segment by user class. A typical segmentation uses separate skims for single-
occupancy vehicles (SOVs), high-occupancy vehicles (HOVs), and one or more classes 
of commercial vehicles. If tolls are present in the region, separate skims by value-of-time 
(VOT) class can also be useful. Because the focus is on simulating scenarios related to 
AVs, rather than forecasting travel for all markets, the project used the following approach: 

a. For the nonresident and special generator markets (commercial vehicles, external 
trips, visitor trips, and airport trips), the base-year trip matrices are unchanged. To 
simplify and streamline the integration process, these trips are assumed to be fixed 
across global iterations, so the external models will not need to be rerun, and no 
travel time skims for these user classes need to be generated. This leaves the 
focus of the work on the resident travel demand that is simulated in the ABM. 

b. Rather than using VOT as a user class criterion, the project team proposed to use 
vehicle type and occupancy. The following classes were proposed: 

i. Conventional vehicle—Single occupant. 

ii. Conventional vehicle—Multiple occupants. 

iii. AV—Single occupant. 

iv. AV—Multiple occupants. 

v. AV—Zero occupants. 

Because the infrastructure that is available for autonomous versus conventional vehicles 
may be an important component of the different scenarios, the travel times may be quite 
different for each of these types, so it is important to provide separate travel time skims to 
the ABM. Producing separate skims for single-occupant and multioccupant vehicles is 
mainly necessary if there are HOV or high-occupancy toll lanes in the region, which is not 
currently the case in Jacksonville. The “zero occupant” trips are a new type of trip made 
possible by AVs and could also be treated differently in the networks under specific 
scenario assumptions. (The ABM writes out trip records that indicate the type of vehicle, 
number of occupants, and VOT, which can be used in the DTA to the desired level of 
detail. The user types above are only used for preparing skim matrices to inform the ABM.) 

8. Treating linkages between trips in a tour and possible trip retiming in the DTA: The 
ABM produces a list of trips, and each trip record indicates the trip’s position in a tour 
(home-based trip chain), as well as the trip departure, the arrival time at the destination, 
and the time spent at the destination before the next trip is scheduled to depart. The trip 
duration on the trip record is based on the travel time skims from the DTA in the prior 
global iteration, but the simulated travel time for that trip in the current iteration could be 
substantially different. If the new simulated travel time is much longer than what was used 
in DaySim to generate the trip, for example, then that could have a “knock-on” effect on 



Integrated ABM DTA Methods to Evaluate Impacts of Disruptive  
Technology on the Regional Surface Transportation System 

December 2017  7  

the rest of the tour—to shorten the activity at the destination or delay the departure time 
from the destination for the next trip. If the traveler could plan for the longer trip duration 
in advance, he or she might also choose to start the trip earlier. 

Several options exist for how trip linkages can be treated in the DTA: 

1. Simulate each trip in a tour independently, ignoring any “knock-on” effects. 

2. Ignore any “knock-on” effects for the most part, but do not allow any activity durations to 
go below some minimum threshold. A trip would only be retimed if the simulated arrival 
time for the previous trip made the subsequent trip physically impossible. (A vehicle cannot 
be making two trips at the same time.) 

3. Use some simple heuristics to manually retime some trips for the next DTA iteration. As 
previously mentioned, the DaySim time-of-day choice models use 30-minute periods, and 
further temporal detail is added in a mostly random way, so some amount of trip retiming 
could be done while remaining consistent with the ABM scheduling models. The heuristics 
would be specified based on the trip sequence in the tour and the activity purpose and 
duration at the trip destination. If a trip on the way to work takes longer in the DTA than 
expected in the ABM, for example, then the DTA can move the departure time earlier to 
try to maintain the same arrival time at work. (This adjustment would need to be done in 
the next DTA internal iteration, as the traffic simulation steps through time so trips cannot 
be moved earlier in time during the current iteration.) If the trip were leaving work, on the 
other hand, the departure time would be maintained, and the trip would arrive at the 
destination later than the trip record indicated. If there are subsequent trips in the tour on 
the way home, the heuristics would then indicate whether/how to retime the next trip. 

4. Use a more detailed, optimization-based retiming algorithm that operates as an 
intermediate step between the DTA and ABM, such as is being done in the Columbus and 
Atlanta Travel Works projects. (The project team considers such a method to be in the 
development stages and beyond the scope of this project.) 

In theory, if one iterates between the ABM and DTA and passes the resulting trips and congested 
travel times back and forth, then the two simulation models will eventually converge to a consistent 
outcome, even if no trip linkages or retiming are considered in the DTA. The main advantage to 
implementing a simple heuristic retiming approach as mentioned above could be to let the DTA 
“anticipate” the type of retiming that would be simulated in the next ABM iteration, and thus 
perhaps reduce the number of global iterations needed to reach a consistent outcome. 

The project team initially proposed to use the simplest approach (first approach) in Phase 1, using 
no trip linkages or retiming. During the project, however, The second approach was implemented, 
which is an improvement on the first approach. The project team could consider implementing 
additional retiming heuristics (third approach) in Phase 2 if it appears promising to obtain a 
reasonable outcome within a smaller number of iterations. However, this is not a priority for the 
main purpose of the research, which is investigating AV scenarios. 
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2.2.2 Hardware Configuration 
This project sought to run the full integrated ABM-DTA system on hardware at two separate sites 
and to be able to run several scenarios simultaneously. The DaySim software is multithreaded 
and scalable, currently simulating about 250,000 person-days per core/thread per hour. So, with 
an eight-core workstation with 8 GB RAM, the entire NFTPO region population can be simulated 
in about 1 hour. Because the DTA needs to run multiple iterations within each global iteration and 
produce skim matrices for the ABM, the project team expected the run time for TransModeler to 
be a key consideration. 

For initial testing and debugging of the ABM-DTA integration, several approaches could reduce 
runtime and enable quicker progress toward finding any initial errors in the model setups or data. 
Although the project team proposed to limit the study region to the City of Jacksonville, the spatial 
reduction toward “subareas” was not done since it requires amending various input files for 
networks, land use, and populations. For initial testing, it was efficient to run the DTA for just one 
time period (e.g., AM peak hours) if any debugging that is relevant to the AM peak networks and 
configuration was also relevant to the other times of day. Thus, once the integration is completed 
and debugged for the AM peak period, it is straightforward to run the midday and p.m. peak hours 
in the DTA. 

Another method that is typically used to reduce run times when testing the ABM models is to 
sample households from the synthetic population (e.g., simulating 1 out of every 10 households 
and assigning an expansion factor of 10 to each resulting trip). This procedure, however, can 
cause “lumpiness” of the results at the OD level, particularly as the number of possible zone pairs 
is already large compared to the number of simulated trips. Thus, sampling was useful for the 
initial testing but was no longer used once the project team reached the stage where a realistic 
spatial distribution of the trips was important for evaluating the results. (Also, the run time of the 
ABM is already short compared to the run time of the DTA.) It was critical that the integrated 
hardware and software environment created during this task be adaptable in later tasks. This 
involved using the existing version control and distribution systems for both TransModeler and 
DaySim to make project-specific software updates available to team members to use in testing 
and application. 

2.2.3 Testing the Reasonableness and Sensitivity of Results 
This research sought to establish the soundness of the integrated model system in terms of 
producing reasonable and robust results for exploratory modeling of scenarios. Thus, the plan for 
testing the integrated model system is not aimed at rigorous calibration and validation toward 
traffic counts and speeds. It is aimed at higher-level calibration and sensitivity testing with some 
more detailed sensitivity analysis for a few key points in the network. 

A first level of testing is on the convergence of the system model components. Is the DTA reaching 
an acceptable level of convergence? Are the DTA and ABM reaching a stable outcome in terms 
of the changes in model predictions between global iterations? Convergence of the DTA was 
measured with multiple metrics. In a recent review of metrics in use (Caliper, 2015), there is no 
single agreed upon measure of effectiveness. The fixity of travel times and the consistency of the 
utilized travel times with those output is sought. This condition is also appealing for the integrated 
ABM-DTA model. Detailed analyses of convergence measures are an important research focus 
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for other studies, but these analyses are beyond the scope of this project. The objective in this 
project is to ensure that the convergence has progressed to the point to where the results are 
meaningful and the sensitivity of the results is reasonable. 

A second level of testing was on the outcomes of the ABM and DTA versus available data. The 
reasonableness of the results depends on the quality and goodness of fit of both the ABM and 
the DTA. If the ABM does not fit the real world then the DTA will not either. Similarly, if the DTA 
is not a good model of traffic and travel speeds, then the activity schedules will be distorted. The 
ABM for Jacksonville was originally calibrated against travel survey data from an add-on sample 
to the 2009 National Household Travel Survey (NHTS). Data from the ongoing 2017 regional 
household travel survey is not yet available; as a result, the NHTS data were used again. 
Automated scripts were used to compare the DaySim outputs against weighted survey data, 
including the following measures: 

• The number of tours per day, by activity purpose and person type. 

• The trip length distribution, by activity purpose and mode. 

• Trip mode shares, by activity purpose and auto ownership. 

• The trip time-of-day distribution, by activity purpose. 

• The activity duration distribution, by activity purpose. 

• The district-to-district OD pattern of tours, by purpose. 

The TransModeler microsimulation is well-calibrated to ground counts and the calibration could 
be further improved by some recalibration of the DaySim model, specifically with respect to time-
of-day of travel issues. 

Because the NHTS data are not a perfect, unbiased source of data, further calibration of the ABM 
may be required after assigning the traffic in DTA. For example, the project team expected that 
further recalibration of the time-of-day scheduling models would be required to obtain a more 
accurate distribution of traffic across the various half-hour periods of the day. Compared to static 
traffic assignment for broad time periods, DTA is much more sensitive to the relative demand in 
each half-hour period, so the DaySim scheduling model calibration would need to be more 
detailed than in past applications. For the DTA, the key data for calibration are observed traffic 
speeds and travel times (i.e., from the same INRIX, HERE, or Google data used to generate base-
year travel time skims for the ABM). Comparison against data for volumes and movements at a 
few key intersections helps to gauge the reasonableness of results. 

The third level of testing is sensitivity testing, which is done by varying key model inputs. To the 
extent possible, these tests should anticipate the types of changes that will be made in the AV-
related scenarios to help ensure that the model system will generate reasonable outcomes. The 
tests gauge the reasonableness of the response in traffic patterns and the relative sensitivity of 
changes in route choice, time-of-day choice, mode choice, destination choice, and tour 
generation. For example, one of the key changes anticipated by the project team for AVs was a 
lower disutility of auto in-vehicle time as the occupant can use his or her travel time more 
productively or enjoyably than while driving. Accordingly, tests were done to lower the disutility 
coefficients for auto in-vehicle time by X%. (In this simple initial test, the change could be made 
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for all vehicles, while in the AV-related scenarios, the value of in-vehicle time will vary by vehicle 
type.) 

Another anticipated effect of introducing AV-only facilities is that it will increase the effective 
capacity of existing infrastructure. The sensitivity to added capacity was tested in the initial task 
by adding a new lane to specific key freeway links in the region. (Again, this capacity was available 
to all vehicles in the initial test runs, while in the AV-related scenarios, it was selectively available 
depending on vehicle type.) It is also anticipated by the project team that the future will see less 
private auto ownership and more use of carsharing, ridesharing, or ride-hailing systems—the 
future versions of Uber, Lyft, and car2go. An interesting sensitivity tests would be to change the 
constants in the ABM Auto Ownership Model to reflect a future in which private auto ownership is 
less attractive. To simulate this more realistically, however, the Rideshare/Carshare mode needs 
to be added into the ABM mode choice models. This was one of the first subtasks proposed for 
Task 4, so the project team proposed that this sensitivity test be conducted as part of Task 4. 

2.3 TransModeler DTA Enhancements 
The DTA model simulates trips having individual and independent departure times and route 
choice behaviors and includes scenarios that represent periods of the day spanning multiple 
hours, including AM and p.m. peak periods and a midday (MD) period in between. Trips have 
individual driver and vehicle characteristics, and those characteristics can assume the user type 
and vehicle class properties of the models from which they are derived. For instance, medium 
and heavy truck trips are generated from freight trips produced by a trip-based model, and 
numbers of occupants and values of time are supplied by lists of tours generated by a DaySim 
ABM. 

As part of the DTA model’s development prior to this project, custom tools were developed to 
read matrices of external and freight trips in Cube format from trip-based elements of the regional 
model and lists of internal trips in DaySim format from activity-based elements of the regional 
model. Both the TransModeler software and the tools previously developed to link the DTA model 
to the regional model were enhanced to support tighter integration between the DTA model and 
the DaySim-Cube travel demand model: 

1. The TransModeler software was extended to manage the simulation of DaySim tours as 
interdependent, rather than independent, sequences of trips, and the tools that transfer 
the trip data between the DTA model and the NFTPO regional model were modified to 
maintain the relationships between trips in a tour. 

2. As described in the next section, model scripts were written to make it simpler to run DTAs 
programmatically and to automate the production of dynamic travel time skims for 
consumption by the DaySim model. In this framework, an integrated ABM-DTA feedback 
model can retain temporal fidelity and preserve disaggregate traveler decision-making 
between the demand and supply models. 

These changes to the DTA software and model support the exploratory runs, and analysis of 
various scenarios estimated the potential impacts of AVs on a metropolitan scale. 
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2.3.1 ABM-DTA Integration: Simulating Trips on Tours 
TransModeler was enhanced to simulate the interactions between trips made by the same traveler 
as part of a tour. Prior to the enhancement, the trips imported from the NFTPO’s DaySim model 
were treated as independent trips, allowing for the potential that trips in a tour may depart before 
prior trips and activities were completed. The enhanced implementation does not permit trips to 
depart on schedule if prior trips were not completed with enough time remaining to satisfy a 
desired activity duration at the prior first trip’s destination (and the second trip’s origin). In the table 
of trips that are to be simulated, fields are now included that may reference the ID and desired 
activity duration of a preceding trip. When a trip refers to a preceding trip, the software will look 
up the prior trip's arrival time and, depending on the scheduled activity duration, approve or delay 
the trip’s departure. This enhancement will preserve the integrity of, and consistency with, tours 
as interdependent trips in accordance with the regional model and provide a more behaviorally 
sensitive modeling framework for evaluating AV impacts. In the tools that import DaySim trips for 
input to the DTA, a separate table is now maintained that contains the tour ID, household number, 
and person number corresponding with each trip. This table can be joined to the trip table after 
simulation to determine whether travelers were able to meet their scheduled activities and to 
derive tour-specific performance measures. 

2.3.2 ABM-DTA Integration: Generating Dynamic Skims 
To integrate an ABM and a DTA is to leverage the DTA’s ability to represent how costs (e.g., 
congested travel times) vary in short time intervals (e.g., between 5 and 30 minutes) over the 
course of a peak period or day in the decisions that travelers make in the ABM. As travel times 
change across periods of peak congestion, so too may the decisions travelers make. For 
example, travelers may change when to depart, when or whether to make discretionary trips and 
how they to chain them together with other trips, and whether to drive alone, carpool, or use public 
transportation. 

When static traffic assignments are used, differences in travel costs over time, which can be 
pronounced even within a morning or evening peak period, are lost. This produces both an 
inaccurate estimation of costs and aggregation bias. These effects undercut the principal 
advantage of the ABM, which seeks to capture the impacts of transportation improvements and 
policies on the way individuals behave, because the temporal aggregation of costs make the ABM 
insensitive to the ways in which improvements and policies may affect the travel experience at 
the disaggregate, individual level. 

To capture the effects of AVs and CVs and supply side strategies relating to AVs and CVs, tools 
were developed to produce dynamic skims for different classes of travelers and modes. The 
dynamic skims are generated separately for AV and non-AV trips because their experiences of 
the network may differ, particularly if supply side strategies involve reserving certain lanes or 
facilities for the exclusive access of AVs. 

The skimming tools are accessed as methods, or functions, belonging to an object called the Run 
Manager in TransModeler’s GIS Developer’s Kit, a scripting environment enabling customization 
of the software. Access to the Run Manager is achieved by issuing a single command: 

RunMgr = CreateObject("TSM.RunManager") 
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A simple script for running a DTA programmatically is shown below: 

RunMgr.SetSimulationRunMode("Dynamic Traffic Assignment") 

RunMgr.RunSimulation() 

To produce dynamic skims once a DTA is completed, the following commands can be run: 
self.SetSimulationRunMode("Simulation") 
self.SetDynamic Skims("True") 
self.MinimizeSimulationWindows() 
self.RunSimulation() 
runs = self.GetDynamicSkimRuns() 
self.CreateDynamicSkimMatrix({ 

{"Run", runs.length }, {"Variable", "Travel Time" }, {"Matrix 
Type", "Dynamic" }, {"Interval", 30 }, {"Vehicle Category", 
{"User A", "User B"}} 

}) 

where “Interval” is the desired time interval size into which congested travel times are aggregated 
and is the interval size that the NFTPO DaySim model expects, “User A” is a designation of trips 
identified as AVs, and “User B” is a designation of trips, including all other trips generated by 
DaySim that are not AVs. 

2.4 Integrated Setup 
As noted, the Task 3 work builds on the existing efforts to build the DaySim ABM and 
TransModeler DTA models. The TransModeler DTA model development project was principally 
focused on developing the DTA network model since it did not include feedback of network level-
of-service indicators (i.e., skims) to the demand model. However, the project did create a DaySim 
microsimulated trip list and auxiliary demand import routine, which was modified as part of this 
work. 

Under Task 3, the TransModeler DTA model was updated to produce dynamic skims and the 
DaySim ABM was updated to make use of the new dynamic skims. TransModeler was run for the 
AM period only to minimize runtime and then the dynamic skims (in 30-minute time slices) were 
used in DaySim for the SOV and HOV travel times for the AM period and for the PM period (after 
being transposed). In addition, both models added an AV mode and the importing of DaySim’s 
microsimulated trips into TransModeler was revised to understand AV trips. 

With the revised model system in place, Task 3 then compared the dynamic skims to the static 
skims and to expected travel times from Google Maps. The dynamic travel time skims generally 
match the static skim times, but are, on average, approximately 5 to 10 minutes longer. In addition, 
some major discrepancies exist as explained later. Finally, the DaySim demand model results 
with dynamic skims were compared to the previous results with the static skims. Since the ABM 
was calibrated to the static skims, it is important to understand how the dynamic skims differ from 
the static skims and the impact on the model system. DaySim trip lengths with the static skims 
versus the dynamic skims were similar, whereas trip travel times increased due to the longer 
travel times in the dynamic skims. Because of the longer auto travel times, auto mode share was 
reduced by over 3%. This increased the mode share for the other modes, especially walk and 
bike, since the dynamic skims are especially long for short-distance trips, which makes nonauto 
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modes more attractive. Overall, the dynamic skims are generally reasonable for exploratory 
modeling analysis, although some issues remain to be addressed in follow-up work. 

During the development of the integrated model system, several issues and challenges were 
discovered, addressed, or required further investigation to be reasonably resolved. Key issued 
included long runtimes, loading of demand into the network, chronological inconsistency of trips, 
generating dynamic skim values when no simulated trips exist, and integration of the additional 
model components (e.g., auxiliary demand, transit). 

• The AM period DTA simulation and dynamic skim generation takes approximately 36 
hours. Because it is practically inefficient to complete the large number of model runs 
required for this project with these runtimes, some simplifications were made to the 
demand model’s understanding of travel time. 

• DaySim outputs trips at the parcel level in the Northeast Regional Planning Model 
(NERPM) ABM. The TransModeler DTA model aggregates those trips to the traffic 
analysis zone (TAZ) level and then builds several zone connectors to simulate the diversity 
of real-world loading points. However, the analysis of the skims revealed that some of the 
extremely long travel time OD pairs were due not to network travel time differences but to 
poor connector choice. Phase 2 can address this by using aggregations of parcel-to-parcel 
travel times rather than centroid-to-centroid, and also by splitting large zones where that 
is most needed (creating less variance in the travel times aggregated for any zone pair). 

• Chronological consistency of the trips generated by the DaySim demand model was also 
an issue. Isolated cases exist where travel and activity times in the DaySim simulation can 
overlap, and this consistency issue will be addressed in Phase 2. 

• TransModeler generates dynamic skims in 30-minute time periods (for this study) by 
querying the simulated travel times for trips in the OD pair. If there are no trips in the time 
slice, then a shortest path travel time is generated for the dynamic skims. Initially this did 
not work in all instances. 

• As currently implemented, the DTA only outputs dynamic travel time information for auto. 
It does not produce walk, bike, or transit network level-of-service indicators (i.e., skims). 
Running the DTA adds to, but does not replace, the network model component of the 
model system. 

Further improvements in the integrated model setup are to finalize the connector loading 
improvements, review the decision to load trips at the TAZ rather than the parcel level, to split 
large zones, and to improve chronological consistency across tours. Beyond these relatively well-
understood improvements, the project team will investigate potential runtime improvements, since 
this remains the major roadblock for the adoption of this integrated model system in practice. 

2.4.1 Detailed Setup 
This section describes the model setup for the base scenario. The basic integrated model setup 
is shown in Figure 1. 
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Figure 1. Basic integrated model setup. 

The existing ABM with static skims and trips was run to produce the necessary inputs to seed the 
DTA model. Next, the DaySim trips and the auxiliary trips were imported into TransModeler. The 
DTA simulation was run and dynamic skims produced. These dynamic skims were then read by 
DaySim, and DaySim produced a new set of trips using the dynamic (and other static) skims. The 
new DaySim trips can be fed back to TransModeler to generate new dynamic skims, if desired. 

2.4.2 Machine Requirements 
The model system required a 64-bit Windows operating system, x64-based processor, a minimum 
of 32 GB of RAM, powerful processors, and 30 GB of hard drive space for a complete TransCAD 
and TransModeler run. The machine used for Task 3 is was an Intel® Xeon® CPU with 28 cores 
@ 2.60 GHz with 256 GB RAM and a 3 TB hard drive. A license is required to run both TransCAD 
and TransModeler. The file size of trips and skims generated by the model system are 
approximately 10 GB. Before executing the setup, the project team made sure to change the user 
profile environment variables %TEMP% and %TMP% folder to a drive with enough memory to 
avoid running out of temporary hard drive space when building the dynamic skims. 

2.4.3 Scenario File and Folder Setup 
An example ABM-DTA setup for this project is shown in Figure 2 in the folder FHH AM—AC. 
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Figure 2. FHH AM—AC folder. 

This folder contains the following: 

• DaySimSetup folder—required files and folders to run DaySim to generate the trip files. 

• DTASetup folder—required files and folders to run the DTA in TransModeler to generate 
the dynamic skims. 

• README—A readme file that explains the steps and instructions to run the entire setup. 

• RunAll.cmd—DOS batch file to run the complete integrated DaySim DTA setup. 

The subfolder DaySimSetup contains several files and folders as shown in Figure 3. 

 
Figure 3. DaySimSetup subfolder. 

The key files and folders include the following: 

1. 07_Coefficients folder—submodel coefficients, including the new ones for this project. 

2. DaySim folder—DaySim program files (e.g., *.exe and *.dll). 

3. DaySimInput folder—inputs such as parcels, households, persons, skims, etc.: 

a. 02_parcel—the parcels used in the model, which are the origin and destination of 
DaySim trips. 

b. 03_household—the synthetic population households. 

c. 04_person—the synthetic population persons. 
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Figure 4. DaySimInput folder. 

4. Outputs folder—where DaySim saves outputs. Moreover, it consists of the following: 

a. Skims input to DaySim. The skims can be in various formats, including text format 
(*.txt) or TransCAD format (*.mtx). 

b. DaySim roster files for understanding which skims correspond to which network 
level-of-service indicators in DaySim (e.g., which skim contains the AM SOV travel 
time). Two roster files exist: 

i. roster_av.csv—contains information about what skims file to use for 
respective modes, indicators, and time periods. This file was revised to 
connect DaySim to the dynamic skims, as described later. 

ii. roster.combinations_av.csv—combinations file, which includes information 
regarding the combination of mode choice and network type, such as SOV 
and full network or SOV and no-toll network. An AV mode was added to 
this file. 

c. DaySim trip file, _trip.tsv, which is imported into TransModeler as the travel 
demand. 

d. DaySim also writes household, person, household-day, person-day, and tour files. 

5. Configuration_test.properties—The DaySim configuration file, which contains information 
about file paths and several factors, values, parameters, and settings such as the 
household sample rate and whether to expect separate skim files for AV versus non-AV. 
All of the DaySim assumptions varied for the EMA tests are defined and specified in the 
configuration file. 
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The subfolder DTASetup contains the following folders and files: 

1. Jacksonville.smp—the planning model file that includes all the network and parameter 
settings and the path to the files and folders necessary to run the desired DTA scenario. 

2. DTA folder—consists of all the information pertaining to the delays and turning movements 
necessary for the dynamic traffic assignment of the network during a time period. 

3. Scenarios.RSC macro—This macro performs multiple tasks. It converts the DaySim trip 
list into TransModeler demand for the desired time period, runs the simulation for the user-
specified time period and scenario, and generates the dynamic skims. The macro must 
be recompiled before running the complete setup since they contain file paths. 

4. Trip Tables folder—contains the DaySim auto trip list and the non-DaySim trip list of the 
auxiliary demand from the existing model. 

5. Parameters folder—consists of the parameters of the DTA model. 

6. Simulation Database—contains the TransModeler networks of the DTA setup for each 
supply type. 

7. TM folder—contains the “turning movements” of the network. 

8. Signal Timings—signal timing files. 

9. Output folder—where the dynamic skims files are saved. 

 
Figure 5. DTASetup subfolder. 
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The RunAll.cmd file is run in the Windows command prompt to run DaySim DTA integrated setup 
based on the instructions, scenario, and parameters set by the user. The key output from the 
DaySimSetup step is the ABM trip list and the key output from DTASetup step is the dynamic 
skims. 

2.4.4 TransCAD and DaySim ABM Setup 
The existing TransCAD and DaySim ABM setup was run to obtain the initial DaySim trip list, static 
skims, and auxiliary demand. For more information on the complete setup, see the earlier 
documentation. The steps to set up and run the model include the following: 

1. Open the Jacksonville.model file in TransCAD (Figure 6). 

2. Click on Manage Parameters on the scenario toolbar to review the scenario setup. Set the 
desired number of model iterations. 

3. Click Run Model on the scenario toolbar once all the parameters are set and properly 
checked. 

The key final outputs of the model step include the following as shown in Table 1. The outputs 
are saved to the Outputs folder. One full run of the model system takes approximately 24 hours 
to complete, including 4 global iterations between the DaySim and auxiliary demand models and 
the static network assignment and skimming. 

For this project, the full static model system only needs to be run once and does not need to be 
rerun for each EMA AV scenario. For each of the EMA AV scenarios, the auxiliary trips (freight, 
externals, and special generators) are kept fixed with the skim matrices for the nonauto modes. 

Table 1. Key TransCAD DaySim ABM outputs. 

Model Output Description 

_trip.bin DaySim trip list 

_tour.bin DaySim tour list 

autobus.mtx Auto to bus trip skims for both peak and off-peak hours 

Knrbus.mtx Kiss and ride trip skims for both peak and off-peak hours 

Walkbus.mtx Walk to bus trip skims for both peak and off-peak hours 

walkCR.mtx Walk to commuter rail trip skims for both peak and off-peak hours 

Persontrips.mtx Pedestrian trip skims 

Skm_d1.mtx SOV skims for all four time periods 

Skm_s2.mtx HOV2 skims for all four time periods 

Skm_s3.mtx HOV3+ skims for all four time periods 

Skm_nm.mtx Nonmotorized trip skims 

Vehtrips.mtx Auxiliary vehicle trips for all time periods 
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Figure 6. Key TransCAD DaySim ABM outputs folder. 
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2.4.5 TransModeler DTA Trip Importer 
Once the DaySim ABM model is run and a new simulated trip file is generated, the next step is to 
convert the DaySim text format (tab separated values) trips to TransModeler trip list format for 
use in the DTA model. The DTA model simulates the parcel-to-parcel vehicle trips estimated by 
DaySim and the zone-to-zone internal-external, external-internal, external-external, and truck 
trips generated by the trip-based model in TransCAD. In the current implementation, the DTA 
model aggregates the DaySim parcel-to-parcel trips to zone-to-zone and creates several 
connectors to approximate parcel loading, as shown in Figure 7. (The other option is to leave the 
DaySim trips as parcel-to-parcel and disaggregate the auxiliary trips from zone-to-zone to parcel-
to-parcel and run the DTA using parcel-to-parcel detail. That option is being considered for Phase 
2.) 

 
Figure 7. Connectors to approximate parcel loading. 

As described in the DTA subfolder, the Scenarios.rsc file contains the TransModeler macro that 
imports the DaySim and auxiliary demand matrices into TransModeler. The macro will compile 
for a model assignment time period, such as AM, and import the appropriate trips and matrices. 
The macro uses the DaySim trip weights to expand the trips to a full population of trips if 
households were sampled in DaySim. Trip departure times are used to allocate trips into time 
periods and DaySim’s VOTs are also used in TransModeler. As described earlier, the driver or 
passenger type (DORP) field identifies driver type for AV modeling: 

• If 1, driver (or main rideshare passenger) in a conventional vehicle >> assign to network. 

• If 2, passenger (or other rideshare passenger) in a conventional vehicle >> do not assign. 

• If 3, main passenger in an autonomous vehicle >> assign to network. 

• If 4, other passenger in an autonomous vehicle >> do not assign. 

The AV trips are set as TransModeler User A and the non-AV trips as User B. The user can use 
the macro either to run the complete integrated setup or to import the DaySim trips to 
TransModeler. 
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Perform the following to run the macro for only importing trips: 

1. Open TransModeler and open the DTA project via File + Open 
TransModeler\Jacksonville.smp. 

2. Choose Tools + GIS Developer’s Kit + the Geographic Information System Developer’s 
Kit (GISDK) Toolbar. TransModeler will open the GISDK Toolbox. 

3. On the GISDK Toolbar, select Compile and Scenarios.RSC. 

4. On the GISDK Toolbar, select Test and type NERPM Import DaySim Trips Only. 

5. Navigate to the DaySim trip list in ABM\2010\outputs\DaySim and select _trip.tsv that has 
been obtained from the previous ABM model run. 

6. Select the desired time period and the output trip list will be saved in the folder: 
TransModeler\Trip Tables\DAYSIM\AM DaySim trips.bin. 

The DaySim and auxiliary trips will be imported for the scenario and a trip data table in 
TransModeler tabular, fixed-format binary (*.BIN) format is output along with a TransCAD matrix 
file (*.MTX) for auxiliary demand. Once the trip tables are imported, they must be added as the 
input trip tables to the Jacksonville simulation project scenario. The run time for this process is 
about 8 minutes. 

2.4.6 TransModeler DTA Setup 
Once the trips have been imported into TransModeler, the DTA will run in TransModeler and the 
dynamic skims will be created. The DTA can be run either from a cold start, in which drivers 
assume free-flow conditions in the first iteration, or from a warm start, in which the solution of a 
previous DTA informs the route choice decisions of drivers in the first iteration. A cold-start DTA 
must be run for a greater number of iterations. Approximately 50 iterations are generally found to 
be sufficient for achieving reasonable convergence (i.e., minimization of the user equilibrium 
relative gap) when the DTA is run from a cold start. However, 25 iterations are generally sufficient 
when warm starting, which is the configuration for this study. A cold start is advised when 
significant changes to the network are made (e.g., to simulate the impacts of a managed lanes 
project). A warm start is advised when modest changes are made to the network or to the input 
trip data. Key inputs to this step are the trip tables and the warm start files, shown in Figure 8 
through Figure 10. 

 
Figure 8. DaySim trip list. 
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Figure 9. Auxiliary demand. 

 
Figure 10. Warm start files. 

The RunAll.cmd file calls a complied version of the Scenarios.RSC macro to create the dynamic 
skims. The following steps compile and run the model: 

1. Open TransModeler and choose Tools + GIS Developer’s Kit + GISDK Toolbar. 

2. On the GISDK Toolbar, select Compile to user interface and select Scenarios.RSC and 
save to DTASetup\skims.dbd. 

3. Open the DTA simulation project Jacksonville.smp. 

4. Choose Project-Settings and ensure that the historical travel time and turning delay tables 
of a prior DTA solution are chosen on the Routing tab. 

5. Open a command prompt in the FHH AM—AC setup folder and run RunAll.cmd. 

 
Figure 11. RunAll.cmd output. 
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6. After completion of DaySim, this will open TransModeler and start the DTA run. 

 
Figure 12. Start of TransModeler DTA run. 

7. Once the run is complete, the dynamic skims will be saved in DTASetup\Output\Subarea 
OD Travel Time (User <A|B>).mtx. 

The dynamic skims for user class A are for AV trips, whereas the dynamic skims for user class B 
are for the non-AV trips. The dynamic skims consist of multiple travel times skims for the analysis 
period, for example Time_0500, Time_0530, Time_0600, Time_0630, Time_0700, Time_0730, 
Time_0800, Time_0830. This step runs in about 72 hours for 50 iterations and 36 hours for 25 
iterations. 

2.4.7 TransModeler DTA DaySim ABM Setup 
Once the TransModeler DTA model run is complete and the dynamic skims are ready, then the 
DaySim ABM model can be rerun in a second global iteration loop to generate a new trip list 
based on the dynamic skims. The input files for the DaySim ABM with DTA run are the same as 
before, except for the skim roster file (roster_dta.csv). 

The roster file needs to be updated since now the DaySim setup will be run using the newly 
created dynamic skims files. Since the process is fully automated, the dynamic skims file is copied 
from the DTASetup\Output folder to DaySimSetup\outputs folder after the completion of the 
DaySim ABM run to ease file management. For this base scenario, in which TransModeler was 
run for the AM period, the roster file was revised as follows: 

1. Since the new skims are for the AM period, the skims for the p.m. period are set to use 
the AM skims transposed by setting the “transpose” column in the roster file to TRUE. 

2. Additional rows for the more precise AM and p.m. time slices (i.e., the 30-minute skims) 
were added for the SOV, HOV2, and HOV3 mode. 

3. A new mode called AV was added to the roster file as a copy of the SOV roster entries. 
This allows AV to use a different set of skims. 
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Figure 13. Snippet of the updated roster file. 

The combinations roster file was also changed. The updated roster combinations file contains a 
new mode called “av,” which is replaced with other as shown in Figure 14: 

 
Figure 14. Updated roster combinations file. 

To run the DaySim DTA integrated setup, run the RunAll.cmd batch file. Make sure a TransCAD 
license is available since it is required to read the TransModeler and TransCAD skims into 
DaySim. The output trip list will be saved as DaySimSetup\outputs\output\_trip.bin (and is a tsv 
text file). This step takes approximately 50 minutes, which is the same amount of time as running 
DaySim with the static skims. Once the DaySim run is complete, the trip file will be copied to the 
DTASetup\Trip Tables\DaySim\2010 folder and the DTA run will continue to create new dynamic 
skims based on the new DaySim trip list. This process of running DaySim and then TransModeler 
can be repeated for as many global iterations as required. Each global iteration takes between 18 
and 36 hours depending on the number of internal iterations used for the TransModeler 
assignment. 

2.5 Analysis of Dynamic Skims 
After TransModeler and DaySim were successfully run with dynamic skims, the next step was to 
compare the static travel time skims (from the previous TransCAD ABM model run) to the dynamic 
travel time skims (from TransModeler DTA run). The skims were compared across several 
measures, including basic descriptive statistics, goodness of fit, trip length distribution, and 
congested ratio.  The travel times and distances for several OD pairs were also manually traced. 
A total of 10 random OD pairs were chosen to compare the static and dynamic travel time skims 
with the previous skims and path traces from Google Maps and the Cube-based model. 



Integrated ABM DTA Methods to Evaluate Impacts of Disruptive  
Technology on the Regional Surface Transportation System 

December 2017  25  

Before starting the analysis, several unused dummy zones present in the network model needed 
to be omitted from the analysis. As shown in Figure 15, these “fan” zones total about 690 and are 
placeholders for future zones. 

 
Figure 15. “Fan” dummy zones. 

2.5.1 Network Skims 
The skim files were first converted to open matrix format5 and then read into R for analysis. Table 
2 shows the descriptive statistics of both the static and dynamic p.m. period skims. 

Table 2. Descriptive statistics of p.m. period skims. 

DS\Mode SOV 
(Static) 

HOV2 
(Static) 

HOV3 
(Static) 

3:30–4:00 
(Dynamic) 

4:00–4:30 
(Dynamic) 

4:30–5:00 
(Dynamic) 

5:00–5:30 
(Dynamic) 

5:30–6:00 
(Dynamic) 

6:00–6:30 
(Dynamic) 

Mean 36.08 36.08 36.08 46.03 47.62 46.91 45.17 42.74 40.50 

Median 31.84 31.84 31.84 41.35 43.23 42.40 40.51 37.88 35.19 

Std. Dev 23.05 23.05 23.05 24.82 25.24 25.18 25.04 24.77 24.74 

Minimum 0.15 0.15 0.15 0.03 0.02 0.02 0.03 0.02 0.08 

Maximum 162.27 162.27 162.27 234.39 506.83 231.82 231.66 231.65 231.65 

                                                           
5 GitHub osPlanning/omx 

https://github.com/osplanning/omx
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From Table 2, the statistics of all three modes (SOV, HOV2, and HOV3) appear similar. However, 
the mean of the dynamic skims for all time slices are about 5-10 minutes greater than the static 
skims. Also, the maximum dynamic skim value for the time slice 4:00 p.m. to 4:30 p.m. is about 
500, which is likely an error. To better understand the differences, 10 OD pairs were chosen at 
random and the static and dynamic skims were compared to the Google travel times and the 
existing static skims. Figure 16 shows the Google Maps path and Table 4 shows the comparison 
of skims. 

 
Figure 16. Google Maps path. 

           Source: Google Map 

From Table 3, the dynamic and static travel times are generally similar except for a couple of 
noted cases. For example, the dynamic skim from 1084 to 2286 for 4:00 p.m. to 4:30 p.m. and 
the Cube skim from 3:30 p.m. to 4:30 p.m. In the case of the dynamic skim, the issue was poor 
connector choice. As noted earlier, the model aggregates parcels to zones for DTA, which results 
in many large zones with many connectors, and TransModeler fails to spread out the loading well 
enough across connectors, which leads to artificial congestion and long travel times. In the case 
of the Cube skim, the issue is that the network connectivity was incorrect and a longer indirect 
route was taken as a result. 
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Table 3. Comparison of skims with Google Maps. 

OD Pair Static Dynamic Google Map  
(Monday Sep 18, 2017) Cube Skims 

Origin Dest. SOV HOV2 HOV3 

3:30 
p.m.–
4:00 
p.m. 

4:00 
p.m.–
4:30 
p.m. 

4:30 
p.m.–
5:00 
p.m. 

5:00 
p.m.–
5:30 
p.m. 

5:30 
p.m.–
6:00 
p.m. 

6:00 
p.m.–
6:30 
p.m. 

3:30 
p.m.–
4:00 
p.m. 

4:00 
p.m.–
4:30 
p.m. 

4:30 
p.m.–
5:00 
p.m. 

5:00 
p.m.–
5:30 
p.m. 

5:30 
p.m.–
6:00 
p.m. 

6:00 
p.m.–
6:30 
p.m. 

3:30 
p.m.–
4:30 
p.m. 

4:30 p.m.–
5:30 p.m. 

5:30 
p.m.–
6:30 
p.m. 

2551 919 34.89 34.89 34.89 38.67 39.17 39.41 40.88 39.65 39.21 30-40 30-40 30-45 30-45 30-40 30-40 35.00 35.00 35.00 

650 1060 14.18 14.18 14.18 19.47 21.69 21.84 21.15 21.00 20.42 12-22 12-24 14-26 14-30 16-30 14-22 17.22 17.22 17.22 

1084 2286 8.89 8.89 8.89 35.78 506.83 8.13 18.68 7.60 6.56 10-18 12-22 12-26 12-20 10-20 10-16 190.02 190.02 190.02 

858 1280 56.19 56.19 56.19 75.58 74.21 67.23 68.75 67.64 63.89 55-80 55-85 60-90 60-100 60-90 55-75 67.05 67.05 67.05 

2226 382 41.21 41.21 41.21 42.28 48.54 47.24 46.93 47.11 44.12 35-60 35-65 40-75 40-80 40-75 35-55 42.43 42.43 42.43 

1091 1030 8.93 8.93 8.93 22.86 24.31 23.89 20.24 15.92 12.74 10-16 10-18 10-16 10-16 10-16 10-16 7.80 7.80 7.80 

1597 183 79.59 79.59 79.59 62.24 61.84 62.57 63.93 63.74 63.38 65-110 65-110 65-110 65-110 60-100 60-100 73.87 73.87 73.87 

10 541 57.55 57.55 57.55 78.69 79.73 71.93 68.02 63.75 60.65 55-90 60-100 60-100 65-90 55-80 50-75 60.65 60.65 60.65 

896 759 28.15 28.15 28.15 49.17 50.19 41.29 36.26 39.95 30.39 22-35 24-35 24-35 24-35 22-35 22-35 28.14 28.14 28.14 

410 2577 49.78 49.78 49.78 64.95 66.94 64.95 62.54 60.42 57.63 50-65 55-70 55-75 55-80 55-80 55-70 59.64 59.64 59.64 
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Table 4 compares the distance skims for the same trace OD pairs and suggests that the distances 
across all three sources are all similar. This suggests the route is likely correct and only the times 
differ. 

Table 4. Comparison of distance skims. 

OD Pair 
(Origin) 

OD Pair 
(Destination) TransCAD Google Map Cube Skims 

2551 919 33.50 33.59 33.32 

650 1060 9.50 8.91 8.95 

1084 2286 5.20 4.66 5.18 

858 1280 49.20 54.34 52.17 

2226 382 23.80 28.5 27.75 

1091 1030 4.30 4.32 4.78 

1597 183 48.70 50.06 51.71 

10 541 49.20 50.32 49.62 

896 759 17.30 17.56 18.16 

410 2577 53.70 61.64 53.39 

To further understand the differences in static and dynamic skims, a histogram of the difference 
was plotted. Figure 17 shows the skim difference has an even distribution with mild skewness on 
both sides. The green shaded region of the histogram shows the large differences. The difference 
was calculated as the dynamic skim subtracted from the static skim and Figure 17 was plotted for 
the time slice of 3:30 p.m.–4:00 p.m. Around 25% of the OD pairs have a negative skim difference 
of 15 minutes or above, which means that for these OD pairs, the dynamic skims were higher 
than the static skims. Around 9% of the OD pairs have a positive skim difference of 10 minutes 
or higher. 
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Figure 17. Differences in static and dynamic skims. 

Trips involving external zones are often longer than internal trips and the skim values also tend 
to be larger. To understand if the external zones have any effect on the increase in skims, the 
mean travel time skim values were calculated for all the OD pairs across difference movements. 
Table 5 shows the static and dynamic mean skims for the different movements. The mean 
dynamic skims are significantly higher than the mean static skims across all zone formats. 
Moreover, the mean skim for the external zones (IE, EI, EE) are higher than the internal zone (II), 
which is intuitive. 

Table 5. Mean travel time skim, by zone. 

Zone SOV 
(Static) 

HOV2 
(Static) 

HOV3 
(Static) 

3:30 p.m.–
4:00 p.m. 
(Dynamic) 

4:00 p.m.–
4:30 p.m. 
(Dynamic) 

4:30 p.m.–
5:00 p.m. 
(Dynamic) 

5:00 p.m.–
5:30 p.m. 
(Dynamic) 

5:30 p.m.–
6:00 p.m. 
(Dynamic) 

6:00 p.m.–
6:30 p.m. 
(Dynamic) 

Internal-Internal 35.03 35.03 35.03 44.81 46.39 45.66 43.88 41.42 39.16 

Internal-External 69.47 69.47 69.47 88.33 90.37 90.09 88.39 85.81 83.09 

External-Internal 72.19 72.19 72.19 83.42 84.93 86.07 86.38 86.02 85.75 

External-
External 84.16 84.16 84.16 103.07 104.39 105.44 105.61 105.41 105.08 
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The OD pairs with the maximum difference are shown below. Table 6 through Table 7 show the 
OD pair with maximum static and dynamic skim difference, respectively. Figure 18 and Figure 19 
show the OD pairs in Google Maps with the maximum static and dynamic difference, respectively. 

Table 6. OD pairs with maximum static skim difference. 

Time period Origin 
(Pair) 

Destination 
(Pair) Static Skim Dynamic Skim Difference value 

3:30 p.m.–4:00 p.m. 1376 2477 98.59 22.95 75.64 

4:00 p.m.–4:30 p.m. 1372 2477 88.54 13.28 75.25 

4:30 p.m.–5:00 p.m. 1372 2477 88.54 13.34 75.19 

5:00 p.m.–5:30 p.m. 1376 2477 98.59 22.75 75.85 

5:30 p.m.–6:00 p.m. 1376 2477 98.59 22.47 76.12 

6:00 p.m.–6:30 p.m. 1376 2477 98.59 21.40 77.19 

 
Figure 18. Google Maps trace of OD pairs with maximum static skim difference. 

           Source: Google Maps 

The OD pairs 1376-2477 and 1372-2477 appear multiple times for static and OD pairs 1412-1452 
and 1314-1289 appear twice in the dynamic skim difference. Further investigation revealed that 
the static skims issues were due to errors in the network, whereas the dynamic skim issues were 
the result of the connector loading issue described earlier. 
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Table 7. OD pairs with maximum dynamic skim difference. 

Difference Origin (Pair) Destination 
(Pair) 

Last Slice Skim 
(6:00–6:30 p.m.) Difference Skim Difference value 

Last—First (3:30–4:00 p.m.) 1412 1452 77.06 10.74 66.32 

Last—Second (4:00–4:30 p.m.) 1966 229 65.32 3.58 61.74 

Last—Third (4:30–5:00 p.m.) 1314 1289 75.96 7.02 68.94 

Last—Fourth (5:00–5:30 p.m.) 1412 1452 77.06 7.90 69.16 

Last—Fifth (5:30–6:00 p.m.) 1314 1289 75.96 3.00 72.96 

 
Figure 19. Google Maps trace of OD pairs with maximum dynamic skim difference. 

         Source: Google Maps 

Next, the correlation between the static and dynamic skims was plotted. A series of scatterplots 
with static skims in the x-axis and the dynamic skims of various time slices in the y-axis are drawn 
in Figure 21 through Figure 25. The correlation significantly improves with each time period (as 
seen from the R-square value) with the highest correlation (R-square = 0.94) during 6:00 p.m.–
6:30 p.m. This may suggest that the static skim is most representative of the later time slices, 
although additional research is required to verify this hypothesis. A cluster of points at the bottom 
of every scatterplot shows that those OD pairs have higher static skims compared to their 
respective dynamic skims. (Further investigation revealed that these are often for adjacent large 
zones that have long travel times in the static skims, whereas the actual trips across the zone 
borders will tend to be shorter, since people travel more often to nearby destinations. Splitting of 
large zones would address this issue and will be considered for Phase 2.) 
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Figure 20. Scatterplot of static vs. dynamic (3:30 p.m.–4:00 p.m.). 

 
Figure 21. Scatterplot of static vs. dynamic (4:00 p.m.–4:30 p.m.). 
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Figure 22. Scatterplot of static vs. dynamic (4:30 p.m.–5:00 p.m.). 

 
Figure 23. Scatterplot of static vs. dynamic (5:00 p.m.–5:30 p.m.). 



Integrated ABM DTA Methods to Evaluate Impacts of Disruptive  
Technology on the Regional Surface Transportation System 

December 2017  34  

 
Figure 24. Scatterplot of static vs. dynamic (5:30 p.m.–6:00 p.m.). 

 
Figure 25. Scatterplot of static vs. dynamic (5:00 p.m.–6:30 p.m.). 
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Figure 26 shows the change of mean dynamic travel time skim over the six time periods. Initially, 
the dynamic skim increase from 3:30 p.m., and after 4:30 p.m. the mean reduces. The horizontal 
red line shows the mean static skim. Figure 26 also shows that the dynamic travel times are higher 
than the static travel time, which suggests the static time period skims best represent the later 
dynamic time-slice skims. 

 
Figure 26. Change of mean dynamic skim over time. 

2.5.2 Congestion Ratio 
The next summary investigates whether the longer travel times in the dynamic skims are related 
to congestion. To test this hypothesis, the ratio of congested travel time (p.m. time period) to the 
free-flow travel time (night [NT] time period) was calculated. The congestion ratio was binned and 
then the mean travel time for each bin was calculated. Figure 27 shows the histogram of 
congestion ratio bins and Figure 28 shows the mean travel time for the static and dynamic skims. 
The second figure does not show a significant difference in the mean static versus dynamic travel 
times by congestion ratio bin (i.e., congestion does not appear to be the explanation for the 
differences). 
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Figure 27. Histogram of static congestion ratio. 

 

Figure 28. Change in mean travel time with static congestion ratio. 

0<x<=1, 34.97 1<x<=1.1, 33.38
1.1<x<=1.2, 38.22 1.2<x<=1.3, 36.89

1.3<x<=1.4, 32.8
1.4<x, 38.36

0<x<=1, 8.32 1<x<=1.1, 12.65
1.1<x<=1.2, 10.66

1.2<x<=1.3, 9.02

1.3<x<=1.4, 7.28

1.4<x, 5.23

0

10

20

30

40

50

60

0<x<=1 1<x<=1.1 1.1<x<=1.2 1.2<x<=1.3 1.3<x<=1.4 1.4<x

M
ea

n 
Tr

av
el

 T
im

e

Static Congestion Ratio (Static PM/ Static NT)

Static Skims Additional Skims (Dynamic)



Integrated ABM DTA Methods to Evaluate Impacts of Disruptive  
Technology on the Regional Surface Transportation System 

December 2017  37  

2.5.3 Trip Lengths 
The next summary compares the static and dynamic travel times by trip length bin. Figure 29 
summarizes trips by length and Figure 30 summarizes mean travel time by trip length bin. Figure 
30 shows that both the mean static and dynamic travel times increase with an increase in trip 
distance. Figure 31 and Figure 32 show that the absolute and percent difference of mean static 
and dynamic travel times is also significantly different with trip distance bin. The percent difference 
between the dynamic and static skims is significantly greater for shorter trips. 

 
Figure 29. Histogram of distance skim. 
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Figure 30. Change in mean travel time with trip distance. 

 
Figure 31. Absolute difference of mean travel time with trip distance. 

0

10

20

30

40

50

60

70

80

90

100
M

ea
n 

Tr
av

el
 T

im
e

Trip  Distance Range

Static

Dynamic (3:30 pm - 4:00 PM)

Dynamic (4:00 pm - 4:30 PM)

Dynamic (4:30 pm - 5:00 PM)

Dynamic (5:00 pm - 5:30 PM)

Dynamic (5:30 pm - 6:00 PM)

Dynamic (6:00 pm - 6:30 PM)

0

2

4

6

8

10

12

14

16

Ab
so

lu
te

 D
iff

er
en

ce

Trip Distance Range

Static & Dynamic (3:30 pm - 4:00 pm)

Static & Dynamic (4:00 pm - 4:30 pm)

Static & Dynamic (4:30 pm - 5:00 pm)

Static & Dynamic (5:00 pm - 5:30 pm)

Static & Dynamic (5:30 pm - 6:00 pm)

Static & Dynamic (6:00 pm - 6:30 pm)



Integrated ABM DTA Methods to Evaluate Impacts of Disruptive  
Technology on the Regional Surface Transportation System 

December 2017  39  

 
Figure 32. Percentage difference of mean travel time with trip distance. 

Figure 33 shows trip length frequencies for static versus dynamic skims. Figure 33 illustrates that 
the dynamic skims have a higher frequency of shorter trips. The mean static trip length is 6.63 
miles, whereas the mean dynamic trip length is 5.95 miles, or about 10% less. This is the result 
of the demand models predicting shorter trips due to the higher travel times in the dynamic skims. 

 
Figure 33. DaySim trip length frequency static vs. dynamic. 
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Figure 34 shows the frequency of trip travel time for both the static and dynamic skims. In this 
case, the dynamic travel times have a lower frequency of shorter trips. The mean static trip travel 
time is 11.08 minutes whereas the mean dynamic trip travel time is 13.07 minutes. 

 
Figure 34. DaySim travel time frequency static vs. dynamic. 

1.1  | Mode Shares 

The final DaySim summary shows the trip mode share for both the static and dynamic skims 
DaySim runs. Table 8 shows the percent difference between the trip modes. The number of 
dynamic bike trips, transit trips, and walk trips are higher than the respective static trips, whereas 
the auto trips and school bus trips is greater in static than dynamic. This is because the mean 
dynamic auto trip travel time is higher than the mean static trip travel time. Auto, relative to the 
other modes, is somewhat less attractive under the dynamic skim scenario. 

 
Figure 35. Trip mode share static vs. dynamic. 
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Table 8. Percentage difference in mode share static vs dynamic. 

Mode Type Static Frequency Dynamic Frequency Percent Difference 

Bike 78,459 97,964 24.86 

HOV2 1,591,339 1,508,563 -5.20 

HOV3+ 1,101,520 1,029,520 -6.54 

School Bus 126,829 112,044 -11.66 

SOV 2,615,740 2,521,840 -3.59 

Transit 67,910 73,522 8.26 

Walk 528,146 720,787 36.47 

2.5.4 Summary 
In sum, the static and dynamic travel time skims are generally consistent, although a few major 
differences are present. The dynamic travel times are usually longer (typically between 5 and 10 
minutes longer) than the static travel times for all time periods. Moreover, there is an acceptable 
correlation between the static and dynamic travel time skims, which improves throughout the p.m. 
period. Because of the longer dynamic travel times, trip travel times are longer in DaySim, trip 
lengths are a bit shorter, and auto mode share decreases somewhat. 

2.6 Issues, Challenges, and Next Steps 
The development of the integrated model system brought to light several issues and challenges. 
The key issues and challenges that were either resolved or require additional investigation were 
long runtimes, loading of demand into the network, chronological inconsistency of trips, 
generating dynamic skim values when no simulated trips exist, issues with large zones, and 
integration of the additional model components (e.g., auxiliary demand, transit). 

The P.M. period DTA simulation and dynamic skim generation takes approximately 24 hours 
depending on the number of iterations used. Because it was not possible to complete large 
numbers of model runs or global iterations during Phase 1 with these runtimes, running the overall 
model system to convergence has not yet been done, although the iterative running of the ABM 
and DTA has been set up and tested. 

DaySim outputs trips at the parcel level in the NERPM ABM. The TransModeler DTA model 
aggregates those trips to the TAZ level and builds many zone connectors to simulate the diversity 
of real-world loading points. However, the analysis of the skims revealed that some of the 
extremely long and short travel time OD pairs were due not to network travel time differences, but 
to poor connector choice, sometimes in combination with large zone size. An example of the 
differences for a relatively short-distance OD pair is shown in Figure 36. 
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Figure 36. Path trace from 1507 to 1505 in the static and DTA models, and Google Maps. 

Some zones were loading all the demand on a few connectors, which created artificial congestion 
(and travel times). Under Phase 1, the DTA was revised to increase the diversity of the connector 
loading (i.e., to better distribute the trips across connectors) by randomizing the connection 
choice. This helped but did not solve the problem. In Phase 2, the project team plans to revisit 
the idea of parcel-to-parcel loading instead of TAZ-to-TAZ loading. (The initial TransModeler 
implementation in Jacksonville used parcel-level loading, so that is not an issue. The challenge 
will be in devising reliable methods for generating zone-to-zone dynamic skims from parcel-to-
parcel trips.) 

A third issue addressed during the integrated model setup was chronological consistency of the 
trips generated by the DaySim demand model. DaySim tours are in priority order for a person-
day and are not in chronological order; temporal consistency across tours is not guaranteed. As 
shown in Figure 37, the same person has two different tours, but one starts before the second 
one finishes (i.e., the end of activity at time 514 occurs after the departure time of the first trip in 
the following tour at time 511). 

 
Figure 37. Tour and trip chronological consistency. 

A review of the trips shows that the results are typically consistent, but since this is a simulation 
model, and since the DTA is modeling every trip in a precise spatial and temporal manner, having 
a trip in a later tour start before the final trip of the previous tour ends can create problems in the 
DTA. For this phase of the project, chronological consistency within the tour was assumed, but 
different home-based tours within a person-day were simulated independently. 
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For this project, TransModeler generates dynamic skims in 30-minute time periods by reporting 
the simulated travel times for trips in the OD pair. If there are no trips in the time slice, then a 
shortest path travel time is generated when building the dynamic skims. Initially, this feature of 
the model system did not work in all instances. After a few iterations of improvements, the dynamic 
skims no longer contained any zero travel times. Having a set of static skims to compare the 
dynamic skims to facilitated this discovery. 

As currently implemented, the DTA outputs dynamic travel time skims for auto. It does not produce 
walk, bike, or transit network level-of-service indicators (i.e., skims). Yet, the DaySim ABM 
requires a complete set of multimodal network level-of-service indicators and requires the existing 
model system (the NERPM ABM in TransCAD + DaySim). In addition, the auxiliary demand 
models (e.g., trucks, externals) are implemented in the existing model system, and it was beyond 
the scope of this effort to reimplement these models to use the new dynamic skims (plus pull in 
other required inputs from the existing model system). Running the DTA adds to, but does not 
replace, the network model component of the model system. This would increase runtime, 
management, and complexity if this model system were used for metropolitan planning 
organization planning, although this exploratory project can keep the auxiliary trips and nonauto 
skims constant and focus only on the changes made in the AV scenarios. 

The next steps in the integrated model setup are to finalize the connector loading improvements, 
review the decision to load trips at the TAZ level, consider splitting some large zones, and improve 
chronological consistency across tours. Beyond these improvements, the project team will 
investigate potential runtime improvements since this remains the major roadblock for the 
adoption of this integrated model system in practice 
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3.0 Adaptation of the ABM and DTA Models to Accommodate 
Key Dimensions of Uncertainty in the Context of AVs 

This project selected multiple dimensions of uncertainty related to CV/AV adoption and use. This 
selection enabled the project team to assess the practicality and effectiveness of using the 
integrated ABM/DTA for exploratory modeling and scenario analysis. While a full EMA application 
might consider many different sources of uncertainty, the prototype approach for Phase 1 included 
a limited set of scenario assumptions to be varied in the analysis. In this task, the project team 
accomplished the following: 

• Adapted the ABM and DTA software to be able to reflect different levels of the specified 
scenario variables. 

• Tested the sensitivity of the model outputs to each scenario assumption varied in isolation. 
This initial testing ensured that the variation in the simulation outcomes is reasonable for 
each input assumption considered by itself. 

In the work plan for Phase 1 Task 5, the project team proposed an initial experimental design for 
varying the scenario input assumptions in combination. Specifying this design up front in the task 
informed the model adaptations in Phase 1 Task 4 and helped ensured that the work proposed 
for Phase 1 Task 5 was feasible. 

3.1 Adaptation Design 

3.1.1 Possible Adaptations to the ABM for Phase 1 
Below is a list of possible adaptations to the DaySim ABM software platform to represent the 
demand for and use of autonomous and shared vehicles. The possible adaptations were 
prioritized for consideration in this phase of the project. The project team assigned priority based 
on judgement of how critical each adaptation/assumption is in representing the behavioral effects 
of AVs and how difficult it is to adapt DaySim to incorporate the particular aspect of AV use. The 
project team then described the selected, highest-priority adaptations in terms of the specific 
changes that were planned to be made to the DaySim model specification. 

This task considered the following adaptations (listed in prioritized order). (Others may be added 
later in Phase 2): 

1. The market penetration and use of AVs is the highest-priority assumption to be 
incorporated into the ABM. Simulating the effect of AVs on the network requires predicting 
whether each auto trip is made in a conventional vehicle or AV. So, it is necessary to adapt 
DaySim to “decide” which households will choose to own AVs instead of conventional 
vehicles. A simple adaptation could use input assumptions about assumed market 
penetration rates over time. Alternatively, DaySim could use an explicit auto type choice 
model that is sensitive to vehicle price and operating characteristics, among other factors. 
The method for adapting DaySim is described in more detail below. 

2. The disutility of in-vehicle time in AVs is another assumption to be incorporated into 
the ABM. This can be affected by productivity, comfort, and perceived safety. As described 
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below, it is relatively easy to adapt DaySim to represent different VOT distributions 
depending on type of vehicle owned or used, and it is an assumption that directly or 
indirectly affects every choice model in DaySim and informs the DTA. 

3. The level of use of carsharing and ridesharing as a substitute for private vehicle use 
is a third critical assumption, which can be incorporated into the ABM in a fairly 
straightforward manner. 

4. A fourth assumption that could have a large effect on the simulation outcomes is the way 
in which households may change their escorting/chauffeuring behavior because of 
owning AVs. The need to give other people rides would clearly diminish with AVs, but it is 
not obvious what other social and safety considerations will come into play. As described 
below, it would be a major undertaking to simulate every detail of the behavioral 
mechanisms of how this might occur between household members, but it may be possible 
to simulate the emergent effect on generated trips by occupancy, purpose, and time-of-
day using a simpler process. 

5. Changes in parking behavior at the destination for AV trips could include use of nearby 
super-stacked parking, or empty vehicle trips to remote parking locations. This type of 
parking behavior for AVs was not modeled in Phase 1. 

6. The generation of “empty” vehicle trips on the network could arise from several types 
of behavior. One is the case of household-owned AVs being used for driverless pick-
up/drop-off trips (assumption four). Other types of empty vehicle trips can be related to 
autos owned by ridesharing services searching for and picking up passengers and AV 
trips to remote parking locations. These three types of empty vehicle trips were not 
generated explicitly by the ABM in Phase 1, although their frequency and location can be 
informed by the ABM trip list (e.g., the trips that use ridesharing vehicles and the trips that 
use privately owned AVs to go to downtown destinations). 

7. Changes could occur in telecommuting and peak-spreading behavior resulting from 
AV ownership and use. The ABM tour generation and scheduling models are sensitive to 
the disutility of auto trips at different times of day, so the demand models will already reflect 
such changes to some extent without any adaptations. However, it is conceivable that new 
types of travel demand model initiatives could be customized to facilitate greater use of 
AVs or ridesharing. For example, work and school hours could be made more flexible so 
that the same number of AVs could serve a greater number of trips. The project team did 
not adapt DaySim to reflect such initiatives in Phase 1, though it will be considered in the 
work plan for Phase 2. 

8. If congestion levels were reduced considerably using AVs or ridesharing systems, new 
trips could be generated because of latent demand for car travel in currently congested 
areas. Such latent demand could cause a “return to the peak” if peak hour speeds and 
reliability improve considerably. As mentioned under item 7, the ABM tour generation and 
scheduling models are already sensitive to the disutility of auto trips at different times of 
day, so the models would generate new trips or reschedule existing trips due to latent 
demand. (Some travelers would also choose to drive to more distant destinations.) Thus, 
no changes to the DaySim software were needed to reflect this mechanism, but since 
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major reductions in congestion have not been observed on a region-wide basis, the extent 
of induced travel that might be seen is uncertain. In Phase 2, the ABM could be calibrated 
to produce different levels of induced travel corresponding to different assumed levels of 
latent demand. 

3.1.2 Detailed Adaptations to the ABM in Phase 1 
Market Penetration of AVs 

The Auto Ownership model in DaySim was adapted in the following ways: 

1. In addition to predicting the number of vehicles owned by a household (0, 1, 2, 3, 4+), the 
model will predict the type of vehicles owned—conventional or autonomous. Two 
simplifying assumptions were made here in Phase 1: 

a. Only two types of vehicles are specified: “conventional,” which may have some 
new connectivity safety features but will require a human driver, and 
“autonomous,” which will not require a human to be present in the vehicle to 
operate in traffic. (Some intermediate level of autonomy could be simulated in 
Phase 2, if it is deemed worthwhile.) 

b. A household is simulated to either own all AVs or all conventional vehicles, but not 
both. Relaxing this assumption would require a model to allocate the different types 
of vehicles to different types of trips within a household, which would require a 
great deal more work. (This may be possible in Phase 2.) 

2. New variables and coefficients were added to the utility functions. The probability of 
owning a specific number of AVs is a function of the same types of variables that affect 
the level of conventional car ownership in the current model, with particular focus on the 
following: 

a. Household income level. 

b. Age of head of household. 

c. Household size and presence of children. 

d. Household workers. 

e. The commuting time disutility by car to the usual workplaces of all workers in an 
AV as compared to a conventional vehicle. 

3. The coefficients on the new variables were asserted and then calibrated to reflect three 
different levels of AV ownership: 

a. Low: For example, 10% AV penetration, on average. 

b. Medium: For example, 50% AV penetration, on average. 

c. High: For example, 90% AV penetration, on average. 

Those asserted to be most likely to own AVs are those with higher incomes, lower ages, and 
longer commuting times. The effects of household size and presence of children on propensity to 
buy AVs is more speculative, although those with children may be more attracted by the improved 
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safety of owning an AV—particularly at higher overall market penetration levels. The variable 
related to the commuting time disutility also makes this model sensitive to the assumption about 
the relative disutility of travel time in AVs versus conventional vehicles, which is discussed next. 

Disutility of In-Vehicle Time in AVs 
In the current version of the DaySim ABM, the travel time coefficient for auto is specified as 
recommended in the SHRP2 C04 project report (reference). The coefficient is a function of the 
following: 

• Tour purpose, with a somewhat higher base coefficient for work tours than nonwork tours. 

• A random component, which, if specified by the user, is drawn from log-normal distribution 
for each simulated tour. 

VOT is also influenced by the travel cost coefficient, which is a nonlinear decreasing function of 
both household income and vehicle occupancy. No obvious reason exists why using an AV should 
affect the travel cost coefficient and only the travel time coefficient was adjusted. It was proposed 
that if a household owns AVs, a modified travel time disutility be used, which is specified by 
factoring the conventional vehicle travel time coefficient: 

• Low difference: The auto time coefficient for AVs is 10% lower. 

• Medium difference: The auto time coefficient for AVs is 40% lower. 

• High difference: The auto time coefficient for AVs is 70% lower. 

It is assumed that the average auto time disutility would never go to zero or be positive, as there 
is usually a more productive or enjoyable way that one could choose to spend one’s time, even if 
one can do many things in the car that one could do elsewhere. (Current models do not assume 
that car passengers have much lower disutilities of time than car drivers, even though nondrivers 
in a conventional vehicle could conceivably do the same things as nondrivers in an AV.) 

In DaySim, the auto travel time coefficient affects every choice model, either directly or indirectly 
through logsum variables. The models that are affected include the following: 

• Tour and trip mode choice. 

• Tour and trip departure time choice. 

• Tour and trip destination choice. 

• Tour and intermediate stop generation (full-day activity pattern choice). 

• Work and school location choice. 

• Auto ownership. 

The relative time and cost sensitivity (VOT) are also written to the individual trip records for use 
in the DTA. 
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Level of Use of Carsharing and Ridesharing as a Substitute for Private 
Vehicle Use 

The main change required to DaySim to reflect this assumption was to add a “paid ride share” 
mode to the tour- and trip-level mode choice models. (These models in turn generate mode choice 
logsums that are inputs to other choice models in the ABM.) In reality, several different types of 
paid ridesharing services could exist and vary in terms of their price structure and flexibility in 
duration and distance of using the vehicle, among other attributes. The project team does not 
know exactly what such variations will be, and it would not be feasible or useful to model the 
choice among many different services. As a result, the project team proposed to include a single 
generic paid ride share mode that captures the essential differences from using one’s own vehicle. 

The paid ride share mode is available to all travelers for all persons (except, perhaps, for young 
children going to school). The variables in the utility function are as follows: 

• The auto travel time to the destination. 

• The cost, which will be based on auto travel distance plus a user-specified fixed per-trip 
cost. 

• The access and egress walk plus wait time, which will be user-specified (and presumably 
quite low). This could also be made a function of land-use density at the trip origin, with 
lower availability and longer waits in more rural areas. 

• A dummy variable for zero-vehicle households. 

• A dummy variable for car competition households (fewer vehicles than drivers). 

• Dummy variables for specific age groups. (Currently, younger adults are more frequent 
users of Lyft and Uber6, but this may be a cohort-based difference that will dissipate over 
time.) 

• A density variable that serves as a proxy for the availability and waiting time for paid 
rideshare options. The number of households and jobs within walking distance is already 
available in DaySim as a distance-decay weighted buffer variable. The higher this buffer 
density measure near the trip origin, the more likely the person is to use the paid rideshare 
mode. (In Phase 2, this proxy will be replaced by separate skims for the paid rideshare 
mode, generated from a transportation network company [TNC] supply model.) 

• Effects of the sharing economy on vehicle ownership. It is expected that a large shift 
toward using shared vehicles would be accompanied by a decrease in private vehicle 
ownership. The effect of the sharing economy on different levels of car ownership is 
specified, with the probability of owning zero vehicles due to the shared economy also a 
function of buffer density (the same variable discussed in the preceding paragraph). 

It would be possible to have different paid ride share alternatives for different numbers of persons 
in the travel party. However, DaySim does not explicitly predict vehicle occupancy, so this would 

                                                           
6 Pew Research Center. Shared, Collaborative and On Demand: The New Digital Economy  

http://www.pewinternet.org/2016/05/19/on-demand-ride-hailing-apps/
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not add a great deal of accuracy to the model. Rather, the cost per passenger will be adjusted as 
a function of the tour purpose, as average auto occupancies vary by purpose. 

For purposes of scenario testing, it is important that assumed shifts in auto ownership levels be 
behaviorally consistent with the assumed use of paid ridesharing modes. The variables related to 
auto ownership in the paid rideshare mode utility ensure some consistency, but calibration is also 
necessary. Thus, the project team proposed to calibrate the auto ownership and mode choice 
models to reflect three different assumed levels of demand: 

1. Low: 3% of trips by paid rideshare mode. No corresponding effect on auto ownership. 

2. Medium: 30% of trips by paid rideshare mode. 15% reduction in auto ownership. 

3. High: 60% of trips by pair rideshare mode. 30% reduction in auto ownership. 

For all levels, the project team made the simplifying assumption that paid rideshare services are 
the earliest adopters of autonomous vehicles, so all paid rideshare trips are made in AVs. This 
assumption is mainly needed in the DTA to know how to treat such trips on the network, although 
the DTA will pass separate skims for AVs and conventional vehicles back to the ABM, so it will 
affect the travel time in the paid rideshare mode utility. 

Changes in Intrahousehold Ridesharing/Chauffeuring Behavior 
Compared to the three adaptations to DaySim listed above, this one is much less straightforward 
to conceptualize and implement. Therefore, the project team had planned to conduct initial 
analysis of activity patterns to gauge how important these changes might be, but to defer any 
implementation and testing in the ABM until Phase 2. Below are three examples of ways that 
adoption of AVs may influence intrahousehold ridesharing trips. (This discussion does not apply 
to “fully joint tours,” in which multiple household members wish to visit the same destination(s). In 
that case, those people would travel together in an AV just as they would in a conventional 
vehicle). 

1. Current behavior: One household member drives another from home to their destination, 
drops them off, and drives back home. Or, conversely, one household member drives from 
home to pick up another and then drives that person back home. 

Adapted behavior: The AV takes the person to their destination and returns home empty. 
Or, conversely, the AV travels empty to pick the person up and returns home. 

Net effect: This change does not influence the number or OD locations of trips; it replaces 
a multioccupant vehicle trip with an empty vehicle trip. (It is possible that the person who 
avoids having to make the trip could use another vehicle to make a trip they would not 
make otherwise, but that would be relatively rare.) 

2. Current behavior: Two people in a household drive from home to different destinations in 
their own vehicles. The timing and locations are such that they might be able to rideshare, 
but they prefer the flexibility of having their own vehicle available any time at their 
destinations. 

Adapted behavior: The two people use the same AV and choose a routing that meets both 
schedules. If needed, the vehicle will drive empty from one destination to the other. For 
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example, this would make it possible for the person who is dropped off first to also leave 
first. 

Net effect: This would reduce the number of vehicles used and the vehicle miles on the 
network, but it could generate empty vehicle trips that offset some of that reduction. 

3. Current behavior: Similar to the second item, two people in a household drive to different 
destinations in their own vehicles. In this case, the timing and locations are different 
enough that it is not feasible for them to rideshare in the same vehicle. 

Adapted behavior: The two people use the same AV but schedule their trips so that the 
AV can take the first person from home to their destination, return home, and then take 
the second person from home to his or her destination (and then wait there until a 
household member needs it somewhere). At least one of the persons is going to need to 
be picked up by the AV later. 

Net effect: This would decrease the number of vehicles used but increase the vehicle 
miles on the network by generating empty vehicle trips. 

A possible adaptation of DaySim would be to wait until the activity patterns are generated for all 
household members, and then look across household adults and compare patterns to identify 
current behaviors matching examples 1, 2, or 3 above. For some specified percentage of those 
matching the examples and owning AV(s), a set of heuristic rules could be used to modify the trip 
patterns to reflect the corresponding “adapted behavior.” In Phase 1, the project team had 
planned to conduct some analysis of the activity patterns to judge the percentage of households 
for which these types of behavioral adaptations might be relevant, but this was pushed to Phase 
2, along with any eventual implementation revisions in the ABM. 

Adaptations to the DTA for Phase 1 
For the Phase 1 research, the following three changes were the highest priority for implementation 
in TransModeler: 

1. Different vehicle headway and speed characteristics for CV/AVs: It is expected that 
connected, autonomous vehicles will be able to achieve higher safe traveling speeds or 
shorter safe following distances than conventional vehicles. This difference was 
implemented into the TransModeler simulation algorithms as a function of both the vehicle 
itself and the vehicle(s) it is following, since AV software will presumably treat other AVs 
differently than vehicles driven by humans. 

2. Provision of AV-only lanes: Autonomous vehicles will be able to operate most safely 
and efficiently when they only interact with other autonomous vehicles. The TransModeler 
networks can be modified to indicate which classes of vehicles can use each link in the 
network, with AV-only lanes designated in a manner analogous to the way that carpool-
only or non-HGV-only lanes are currently simulated. Three different levels for testing may 
include the following: 

• Low: No AV-only lanes. 

• Medium: Roughly 50% of freeway lanes are AV-only. 
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• High: 100% of freeway lanes and roughly 50% of major arterial lanes are AV-only. 

In Phase 2, additional levels could be tested to give empty AVs less priority than AVs 
carrying passengers. 

3. Provision of “smart intersection controls”: When most or all vehicles can communicate 
with intersection traffic controls, then the timing and response of traffic signals can be 
adjusted dynamically to optimize throughput or to minimize the maximum delay 
experienced (or some combination of the two).  Beginning to introduce this feature into 
TransModeler was a challenging but important aspect of the Phase 1 work. Since it is 
possible to change the parameters on intersection delays in the simulation without 
simulating exactly how the dynamic optimization will work, three different levels of 
optimization could be: 

• Low: No dynamic optimization of signal controls. 

• Medium: Some dynamic improvement of throughput, but still using a conservative 
“cycling” approach to avoid long delays from any direction. 

• High: Dynamic optimization to maximize throughput. 

“Smart” intersection controls could also be programmed to give AVs priority over 
conventional vehicles like how buses can currently receive longer green cycles at some 
traffic signals. This is an additional level of optimization that may be tested in Phase 2. 

Other aspects of network simulation that were not dealt with in Phase 1 but may be 
interesting for Phase 2 include the following: 

• The frequency and severity of accidents for autonomous and conventional vehicles 
in dedicated and mixed-use lanes. 

• Narrowing of traffic lanes made possible by AV-only traffic and resulting changes 
in capacity. 

• The location and use of parking, including super-stacked or remote parking for self-
parking vehicles. 

3.2 Adaptation of the DaySim Software 
The project team modified the DaySim code to reflect demand for AVs and a new “paid rideshare” 
/ “ride-hailing” mode was added, which can also be specified to use AVs. The code was also 
adapted to use an adjusted disutility of in-vehicle time (VOT) for AV trips. This section documents 
how to use the new software capabilities and presents results from some example demand 
scenarios. 

3.2.1 Changes in the DaySim configuration settings 
Table 9 through Table 13 list new configuration switches and parameters added along with 
suggested parameter values. 

Table 9 shows parameters used in the new “vehicle type choice” model. When the 
“AV_IncludeAutoTypeChoice” switch is included as True, this model is run. It determines whether 
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each household owns conventional vehicles or AVs. (Currently, it is an “all or nothing” model—no 
households have a mix of conventional vehicles and AVs, as that would require also adding a 
vehicle allocation model.) 

The other parameters determine the utility function for owning AVs, which includes an auto type 
constant, effects of low and high household income, effects of younger and older head of 
household, and an effect of total auto daily commute time for all household commuters. 

Two parameters are used in the auto ownership level model that can be specified to make it more 
likely that households who (would) choose to own AVs also choose to own zero vehicles or one 
vehicle. (In a sense, the vehicle type choice can be thought of as the propensity to own AVs if 
one were to own autos, as it is possible for the model to predict that the household [would] own 
AVs and then predict that the household owns zero autos.) 

Table 9. AV parameters. 

Parameter Choice 

AV_IncludeAutoTypeChoice TRUE 

AV_AutoTypeConstant  0 

AV_HHIncomeUnder50KCoefficient  -1.0 

AV_HHIncomeOver100KCoefficient  1.0 

AV_HHHeadUnder35Coefficient 0.5 

AV_HHHeadOver65Coefficient -1.0 

AV_CoefficientPerHourCommuteTime  0.25 

AV_Own0VehiclesCoefficientForAVHouseholds 0 

AV_Own1VehicleCoefficientForAVHouseholds  1.0 

For these changes to work in DaySim, a line like the one below must be added into the 
AutoOwnershipModel coefficient (F12) file: 

200 AVVars T 1.00000 

This is a coefficient (#200) constrained to 1 that multiplies the various parameters in the 
configuration file. 

The next set of inputs in Table 10 are for adding the “paid rideshare” mode to the mode choice 
models. The switch “PaidRideShareModeIsAvailable” makes this mode available for any trips. 
The other parameters determine the utility of the mode, in terms of a mode-specific constant, an 
extra cost per mile (in addition to any toll costs), a fixed cost per trip, and effects of the person’s 
age group. 

The “PaidRideShare_DensityCoefficient” is applied to the number of jobs and households within 
the buffer around the trip or tour origin microzone/parcel, and it is a proxy for areas where TNC 
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vehicles are most likely to be available. (In Phase 2 updates, the project team will allow for 
separate skims for this mode based on a TNC network supply model.) 

If “WriteResidentialBufferDensityToOwnOrRent” is set to True, the “OwnOrRent” field in the 
household output file will be overwritten with the applicable density value for the household’s 
home location to aid in analysis of the outputs. 

Table 10. PaidRide parameters. 

Parameter Choice 

PaidRideShareModeIsAvailable  TRUE 

PaidRideShare_ModeConstant  -5 

PPaidRideShare_DensityCoefficient    0.003 

PaidRideShare_ExtraCostPerDistanceUnit  1 

PaidRideShare_FixedCostPerRide 5 

PaidRideShare_Age26to35Coefficient  0.25 

PaidRideShare_Age18to25Coefficient 0.5 

PaidRideShare_AgeOver65Coefficient  -0.5 

WriteResidentialBufferDensityToOwnOrRent TRUE 

For these changes to work in DaySim, a line like the one below must be added into the 
coefficient (F12) files for the TripModeModel, WorkTourModeModel, SchoolTourModeModel, 
OtherHomeBasedTourModeModel, and WorkBasedSubtourModeModel: 

90 PRS-vars T 1.000 

This is a coefficient (#90) constrained to 1 that multiplies the various parameters in the 
configuration file. 

The next set of inputs in Table 11 specifies that the paid rideshare mode will use AVs. This is 
done by setting “AV_PaidRideShareModeUsesAVs” to True, and that only has an effect if 
“PaidRideShareModeIsAvailable” is also set to True. If this mode uses AVs, the AV-specific 
settings for the mode-specific constant, extra cost (in dollars) per mile, and fixed cost (in dollars) 
per ride override the settings in Table 10. An effect from the auto type model is present, 
“AV_PaidRideShareAVOwnerCoefficient,” which says that those in households who have a 
propensity to own AVs (as opposed to conventional vehicles) also have a greater propensity to 
use paid rideshare when it uses AVs (as opposed to conventional vehicles). 

Table 11. PaidRideShare AV mode parameters. 

Parameter Choice 

AV_PaidRideShareModeUsesAVs TRUE 

AV_PaidRideShare_ModeConstant  -5 
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Parameter Choice 

AV_PaidRideShare_DensityCoefficient 0.003 

AV_PaidRideShare_ExtraCostPerDistanceUnit  1.0 

AV_PaidRideShare_FixedCostPerRide  5.0 

AV_PaidRideShareAVOwnerCoefficient 1 

Five additional variables shown in Table 12 in the Auto Ownership Model represent the “sharing 
economy” under AVs (applicable when AV_PaidRideShareModeUsesAVs is set to TRUE). 
Making the extra paid rideshare mode available increases the overall mode choice logsum, which 
can have large indirect effects in other parts of the model system (e.g., induced trips), particularly 
in the higher-density areas when this mode is more attractive. This effect is counteracted if the 
“sharing economy” also sees a decrease in private auto ownership. This is included in the Auto 
Ownership Model via the settings in Table 12. The density-based coefficient makes owning zero 
vehicles more feasible in higher-density areas where the availability of the TNC mode is higher. 
The others are additive constants for owning 1, 2, 3, or 4+ vehicles relative to owning zero 
vehicles, so setting these to negative numbers increases the probability of owning zero vehicles. 

Table 12. AV ownership parameters. 

Parameter Choice 

AV_SharingEconomy_DensityCoefficientForOwning0Vehicles 0.001 

AV_SharingEconomy_ConstantForOwning1Vehicle -0.5 

AV_SharingEconomy_ConstantForOwning2Vehicles -1 

AV_SharingEconomy_ConstantForOwning3Vehicles -1 

AV_SharingEconomy_ConstantForOwning4Vehicles -1 

The final new parameter, in Table 13, is “AV_InVehicleTimeCoefficientDiscountFactor.” This 
factor reduces the disutility of auto in-vehicle time, either in a privately owned AV or in a paid 
rideshare AV. When this factor is 0.20, for example, the auto in-vehicle time disutility is reduced 
by 20% compared to what it would be otherwise. (This is applied multiplicatively after all other 
systematic and random components that affect the in-vehicle time coefficient have been applied.) 

The final new switch, also in Table 13, is “AV_UseSeparateAVSkimMatrices.” If this is set to True, 
then the roster CSV file should include entries for travel time, distance, and toll matrices for the 
“av” mode, just like it does for the “sov,” “hov2,” and “hov3” modes. 

Table 13. Additional AV parameters 

Parameter Choice 

AV_InVehicleTimeCoefficientDiscountFactor  0.5 

AV_UseSeparateAVSkimMatrices  FALSE 
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3.2.2 Changes in the DaySim Output Files 
In the household-level output file, the variable restype is used to indicate the chosen vehicle type. 
If “AV_IncludeAutoTypeChoice” is set to TRUE, then each output household record will have one 
of the following values: 

0 = household owns conventional vehicles. 

1 = household owns AVs. 

The variable hhvehs will still have the number of vehicles owned by the household like before. 

In the Trip-level output file, the variable dorp has two new codes (3 and 4) to identify AV trips, 
corresponding to codes 1 and 2 for non-AV trips. If the value of mode is 3 (sov), 4 (hov-2), 5 (hov-
3+), or 9 (paid rideshare), then the value of dorp will be one of the following values: 

1 = driver (or main rideshare passenger) in a conventional vehicle >> assign to network. 

2 = passenger (or other rideshare passenger) in a conventional vehicle) >> do not assign to 
network. 

3 = main passenger in an AV >> assign to network. 

4 = other passenger in an AV >> do not assign to network. 

For AV trips, the value of vot in the trip file also accounts for the 
“AV_InVehicleTimeCoefficientDiscountFactor.” 

3.2.3 Test Runs with Example Scenarios 
After running several initial tests and diagnostics, a base scenario plus 10 example scenarios 
were run for reporting in this document. Table 14 shows the DaySim configuration used for each 
of the scenarios. The scenarios are as follows: 

(1) The Base scenario for comparison purposes. No private AV ownership is simulated, 
nor is use of the paid rideshare mode. 

(2-10) All nine combinations of private AV ownership at Low, Medium, and High levels, 
and use of AV paid rideshare at Low, Medium, and High levels. These are denoted at 
combinations of “AV low,” “AV medium,” or “AV high,” and “SH low,” “SH medium,” and 
“SH high.” 

(11) The “AV high/SH high” scenario run again, but with the VOT discount factor set at 
75% instead of 25%. 

Figure 38 to Figure 53 show results from running DaySim for one iteration through the 2010 
Jacksonville region synthetic population of approximately 575,000 households. All runs use the 
same 2010 base scenario static skim matrices with no feedback from network assignment. (The 
runs in Task 5 include feedback from the TransModeler dynamic assignment.) 

Figure 38 to Figure 47 shows the results in terms of predicted private vehicle ownership patterns. 
Some results of note include the following: 

• The fraction of private vehicles that are AVs rises from 0% in the base scenario to around 
10% in the in the AV-low scenarios to about 45% in the AV-medium scenarios, and to over 
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90% in the AV-high scenarios, providing several private AV ownership scenarios for the 
exploratory tests. 

• Figure 38 shows that AV ownership is slightly higher in the low-density areas in the SH 
low scenarios, but a little bit higher in the high-density areas in the SH high scenarios. This 
result illustrates the assumed correlations between private and shared AV use, but the 
differences are small. 

• Figure 39 shows that there is a substantial increase in AV ownership with higher income 
in the AV-low and AV-medium scenarios, but in the AV-high scenarios, there is high AV 
market penetration across all income groups. 

• Similarly, Figure 40 shows lower AV market penetration for households with heads of 
household over age 65 in the AV-low and AV-medium scenarios, but in the AV-high 
scenarios there is high AV penetration in all age groups. 

• Figure 41 shows a similar pattern for AV market penetration by total household commute 
travel time category, although the assumed differences are somewhat smaller than those 
assumed for income groups and age groups. 

• Figure 42 shows that the percent of households owning zero vehicles depends much more 
on the SH scenario type than on the AV scenario type. In the SH low scenarios, the percent 
of zero-vehicle households stays close to the Base scenario percentage—less than 10% 
of all households. In the SH medium scenarios, around 33% of all households own zero 
vehicles, while in the SH high scenarios, about 50% of households own zero vehicles. The 
percent of households owning one vehicle is somewhat higher in the AV-high scenarios 
because of the assumption that households purchasing AVs can use them as “private 
taxis” in some cases and will need to own fewer vehicles, on average. The percent of zero-
vehicle households goes down slightly as AV penetration increases. This is partly because 
AVs can be used by a wider range of the population, but mainly because the lower disutility 
of in-vehicle time for AVs makes auto ownership more attractive in DaySim. 

• Figure 43 shows that overall vehicle ownership decreases from 1.76 per household in the 
Base, to between 1.29 to 1.6 in the SH low scenarios, to between 0.91 to 1.11 in the SH 
medium scenarios, and to between 0.62 to 0.73 in the SH high scenarios. Thus, the SH 
high scenarios are an extreme shift to the sharing economy, with low vehicle ownership in 
the denser urban areas. 

• The trend in auto ownership with density is illustrated in Figure 44. The most extreme 
drops in auto ownership are in the denser areas in the SH medium and SH high scenarios. 

• Figure 45 shows that the higher-income households maintain higher auto ownership levels 
in all of the scenarios. 

• Figure 46 shows that the variation in auto ownership levels by age group remains similar 
in all the scenarios (even though the percent of autos owned that are AVs differs 
substantially by age group—see Figure 40). 
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• Figure 47 shows that vehicle ownership remains highest in the households with the 
highest total commute travel time in all scenarios. These are also more likely to be the 
households living in less dense areas, so the results are consistent with those in Figure 
44. 

• Although not shown in the figures, reducing the value of in-vehicle time disutility in the AV-
high/Shared-high scenario produces only a slight shift toward higher AV ownership. No 
direct effect of VOT on vehicle type choice in the models exists, so this result arises from 
an indirect accessibility effect. 

Figure 48 to Figure 53 show some key results at the person-trip level. In these figures, the extra 
AV-high/SH-high/VOT-low scenario is also included since the change in VOT has more 
substantial effects at the trip level. First, Figure 48 shows trip mode shares for the scenarios. In 
the Base scenario, about 90% of trips are by private auto, with various occupancy levels (SOV, 
HOV 2, HOV 3+). When paid rideshare use is low (SH low), the AV-low, AV-medium, and AV-
high scenarios do not change the mode share for private auto use much—it remains around 85%, 
The big shifts are for the paid rideshare use scenarios, with the paid rideshare mode getting about 
a 10% mode share in the SH low scenarios, a 50% mode share in the SH medium scenarios, and 
a 70% mode in the SH high scenarios. Paid rideshare is assumed never to reach high mode 
shares in the more rural areas where availability may be low. The last two bars show that the 
lower VOT does not affect mode share noticeably since most car trips are by AV in both scenarios 
and there is little demand for the nonauto modes (walk, bike, transit) for more trips to be attracted 
from. 

As use of paid rideshare increases, the drop in private auto mode share is largest for drive-alone 
trips and least for shared ride 3+ trips. One reason for this is that the DaySim models do not (yet) 
have separate occupancy modes for paid rideshare and do not reflect the sharing of cost that 
occurs when multiple people use paid rideshare together while the choice between drive alone, 
shared ride 2, and shared ride 3+ does reflect such cost-sharing. (This is an issue that could be 
addressed in Phase 2.) Another reason is that the AV paid rideshare mode is not available in 
DaySim for trips on Serve Passenger (pick-up/drop-off) tours, assuming that such tours are not 
compatible with AV use. It would be best to also reduce the generation of such serve passenger 
tours when they are no longer necessary because the person who was being picked up or 
dropped off is now using an AV. (This issue will also be addressed in Phase 2 through simulating 
coordination and adjustment of travel patterns across household members to take advantage of 
AVs.) 

Figure 49 shows the trip shares by “vehicle and passenger type.” As described earlier, just like 
DaySim designates a driver and (when applicable) passengers for a conventional auto trip, it also 
needs to designate a “main passenger” and (when applicable) “other passengers” for an AV tour, 
because only the “main passenger” vehicle trips will be assigned to the network. Currently, the 
probability of a paid rideshare AV trip being a “main passenger” or “other passenger” is based on 
base-year auto occupancy rates by purpose in private vehicles, assuming that average party sizes 
will be similar in private and shared vehicles. Figure 50 shows the percentage of person-trips in 
AVs in all scenarios. The percentage goes up from 20% in AV low/SH low to 95% in AV high/SH 
high. The shift to lower in-vehicle time disutility in the last scenario has little effect, raising the AV 
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share from 95% to 96%. Overall, these scenarios will give a broad range of demand conditions to 
test scenarios with different mixes of conventional vehicles and AVs on the roads, with variations 
between more urban and more rural areas. 

Figure 51 shows the percent of all trips that are by AVs (either private or shared), by traveler 
residential area density categories. AV use is low in rural areas unless private AV ownership is 
high. AV use is high in the densest areas in most of the scenarios except those with lowest paid 
rideshare use. By person age group, AV (Figure 52) use is highest in the 18-24 and 25-34 groups, 
and lowest in the age 65 plus group. These trends by density and age follow the patterns expected 
from the way that the auto ownership and mode choice models are specified. 

By tour purpose (not shown in the figures), AV use is highest for work tours and lowest for school 
tours (where school bus remains a major mode). In the SH high scenarios, AV use remains lower 
for Serve passenger tours for the reasons mentioned above. 

Finally, Figure 53 shows average trip distance by mode and scenario. In general, the paid 
rideshare trips are shorter than the private auto trips (particularly the SOV trips), because they 
are made in more urban areas and because they have a higher marginal cost per mile. The SOV 
trips tend to be longest because they are made most often for commute trips, which have the 
longest average distance. As paid rideshare use goes up in the SH medium and SH high 
scenarios, the average paid rideshare trip distance goes up as this mode starts to draw more trips 
away from private auto trips, which are generally longer. Private auto trip average trip length also 
goes up since it tends to be the shorter private auto trips that shift to paid rideshare (and may also 
shift to closer destinations at the same time). Interestingly, even though the average trip lengths 
for private auto trips and paid rideshare trips both go up as paid rideshare use increases, overall 
trip length (not shown in the figure) goes down somewhat because more trips are made in the 
mode with the shorter average trip length (paid rideshare). 

In Figure 53, the project team observed a substantial effect of reduced in-vehicle time disutility 
(lower VOT). The main effect is destination-switching, with the average trip length for private car 
trips increasing by about 20% (from about 10 miles to 12 miles for SOV trips). 

In sum, these initial results of running only the demand models demonstrated that the new 
features added to the DaySim demand models functioned properly to create several plausible 
scenarios under different sets of input assumptions. In Task 5, some of these scenarios are 
combined with different supply side scenario inputs to broaden the exploratory runs to include 
both demand-side and supply side assumptions.
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Table 14. Settings used for 11 example scenarios. 

 Base 
(BB) 

AV 
low/SH 

low 
(LL) 

AV 
low/SH 
medium 

(LM) 

AV 
low/SH 

high 
(LH) 

AV 
medium/SH 

low 
(ML) 

AV 
medium/SH 

medium 
(MM) 

AV 
medium/SH 

high 
(MH) 

AV 
high/SH 

low 
(HL) 

 

AV 
high/SH 
medium 

(HM) 

AV 
high/SH 

high 
(HH) 

AV 
high/SH 

high/VOT 
low 

(HH2) 
AV_IncludeAutoTypeChoice FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
AV_AutoTypeConstant   -2.5 -2.5 -2.5 0 0 0 3 3 3 3 
AV_HHIncomeUnder50KCoefficient   -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
AV_HHIncomeOver100KCoefficient   1 1 1 1 1 1 1 1 1 1 
AV_HHHeadUnder35Coefficient  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
AV_HHHeadOver65Coefficient  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
AV_CoefficientPerHourCommuteTime   0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
AV_Own0VehiclesCoefficientForAVHouseholds  1 1 1 1 1 1 1 1 1 1 
AV_Own1VehicleCoefficientForAVHouseholds   2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 
AV_InVehicleTimeCoefficientDiscountFactor   0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.75 
PaidRideShareModeIsAvailable  FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
PaidRideShare_Age26to35Coefficient   0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
PaidRideShare_Age18to25Coefficient  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
PaidRideShare_AgeOver65Coefficient   -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 
AV_PaidRideShareModeUsesAVs FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
AV_PaidRideShare_ModeConstant   -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 
AV_PaidRideShare_DensityCoefficient   0.002 0.006 0.01 0.002 0.006 0.01 0.002 0.006 0.01 0.01 
AV_PaidRideShareAVOwnerCoefficient   1 1 1 1 1 1 1 1 1 1 
AV_PaidRideShare_ExtraCostPerDistanceUnit   1 0.75 0.5 1 0.75 0.5 1 0.75 0.5 0.5 
AV_PaidRideShare_FixedCostPerRide   5 5 5 5 5 5 5 5 5 5 
AV_SharingEconomy_DensityCoefficientFor0Vehicles  0 0.001 0.002 0 0.001 0.002 0 0.001 0.002 0.002 
AV_SharingEconomy_ConstantFor1Vehicle  0 -0.5 -1 0 -0.5 -1 0 -0.5 -1 -1 
AV_SharingEconomy_ConstantFor2Vehicles  0 -1 -2 0 -1 -2 0 -1 -2 -2 
AV_SharingEconomy_ConstantFor3Vehicles  0 -1 -2 0 -1 -2 0 -1 -2 -2 
AV_SharingEconomy_ConstantFor4Vehicles  0 -1 -2 0 -1 -2 0 -1 -2 -2 



Integrated ABM DTA Methods to Evaluate Impacts of Disruptive  
Technology on the Regional Surface Transportation System 

December 2017  62  

 
Figure 38. Percentage of private vehicles that are AVs, by land-use density within buffer around residence. 

 
Figure 39. Percentage of private vehicles that are AVs, by household income category. 
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Figure 40. Percentage of private vehicles that are AVs, by household head age category. 

 
Figure 41. Percentage of private vehicles that are AVs, by household commute travel time category. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Base AV low /
SH low

AV low /
SH

medium

AV low /
SH high

AV
medium
/ SH low

AV
medium

/ SH
medium

AV
medium
/ SH high

AV high /
SH low

AV high /
SH

medium

AV high /
SH high

head under 35 head 35-64 head 65 plus

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Base AV low /
SH low

AV low /
SH

medium

AV low /
SH high

AV
medium /

SH low

AV
medium /

SH
medium

AV
medium /

SH high

AV high /
SH low

AV high /
SH

medium

AV high /
SH high

no commuters under 60 min over 60 min



Integrated ABM DTA Methods to Evaluate Impacts of Disruptive  
Technology on the Regional Surface Transportation System 

December 2017  64  

 
Figure 42. Distribution of number of autos owned, by scenario. 

 
Figure 43. Average number of privately owned vehicles per household, by scenario. 
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Figure 44. Average vehicles/household, by land-use density in buffer around residence. 

 
Figure 45. Average vehicles/household, by income category. 
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Figure 46. Average vehicles/household, by age group of head of household. 

 
Figure 47. Average vehicles/household, by household commute travel time category. 
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Figure 48. Person-trip mode share, by scenario. 

 
Figure 49. Person-trip vehicle type and driver/passenger type, by scenario. 
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Figure 50. Percentage of person-trips in AVs, by scenario. 

 

Figure 51. Percentage of person-trips in AVs, by land-use density in buffer around residence. 
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Figure 52. Percentage of person-trips in AVs, by person age group. 

 

Figure 53. Average trip distance, by mode and scenario. 
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3.3 Adaptations of the TransModeler DTA software 
The DTA model simulates individual trips where each trip is independent from all other trips and 
tours where the next trip occurs only after the previous trip and the associated activity duration 
are complete. Each trip, whether it be an individual trip or part of a tour, has independent route 
choice behaviors, individual driver characteristics, and specific vehicle attributes. The driver and 
vehicle characteristics of each trip are derived from their source model. For instance, 
characteristics for medium and heavy truck trips are generated from freight trips produced by a 
trip-based model, and numbers of occupants and values of time for nonfreight trips are supplied 
by lists of tours generated by a DaySim ABM. 

The DTA model also simulates driver behaviors, including acceleration and lane-changing 
decision-making, at 0.1-second time steps. By adapting the models of those behaviors to reflect 
the way an AV, as opposed to a human driver, would operate, the project team can test the 
impacts of AV and related technologies. To that end, TransModeler was enhanced to support AV 
analysis in several respects: 

• The vehicle characteristics mentioned earlier were extended to include an AV designation. 
This enhancement of the demand-side representation allows for the analysis of varying 
degrees of market penetration for AVs and for another model, such as an ABM, to supply 
a list of trips that explicitly identifies AVs. 

• In TransModeler, the simulation network uses an explicit and detailed representation of 
lanes and lane geometry. This network model was updated to allow lanes to be designated 
for AV operation. In other words, the analyst may designate in which lanes AVs are 
permitted to operate under automated control. This augmentation of the supply side 
representation facilitates exploration of scenarios in which certain lanes or facilities may 
be reserved exclusively for AVs. 

• The representation of simulated drivers and vehicles was extended to allow six commonly 
recognized levels of vehicle automation (Level 0 through Level 5 described below)—which 
include automation of acceleration, steering, and other aspects of driving—to be applied 
to a user-defined vehicle class. 

• An acceleration model identified from the research literature was chosen and implemented 
to represent a mode of cooperation between CVs referred to as cooperative adaptive 
cruise control (CACC). 

3.3.1 Adaptation of a DTA for Simulating AVs 
TransModeler was enhanced to support the simulation of AVs. With this enhancement, the 
modeler can create new vehicle classes and assign to each one of the following Society of 
Automotive Engineers International-defined and U.S. Department of Transportation-adopted 
levels of automation: 

• Level 0–No Automation. 

• Level 1–Driver Assistance: Steering (modifying direction) and/or 
acceleration/deceleration can be performed by the on-board driver assistance system 
using information about the driving environment; the driver performs all other driving tasks. 
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• Level 2–Partial Automation: Both steering (modifying direction) and 
acceleration/deceleration are performed by the on-board driver assistance system using 
information about the driving environment; the driver performs all other driving tasks.  The 
driver must be available/alert to take over, if needed. 

• Level 3–Conditional Automation: An on-board automated driving system operates all 
aspects of driving; the driver responds only to requests to intervene. 

• Level 4–High Automation: An on-board automated driving system operates all aspects 
of driving and continues to do so even if the driver fails to respond to requests to intervene.  
This level of automation may have situational limitations, for example only within a 
geofence. 

• Level 5–Full Automation: An on-board automated driving system operates all aspects of 
driving under all roadway and environmental conditions, negating any need for driver 
intervention. 

The assumptions described here about the representation of vehicle automation are subject to 
change pending input from other members of the team and FHWA as the project advances to 
subsequent tasks. 

Vehicle classes that are not assigned an automation level or that are assigned Level 0 are 
simulated according to the default models of driving behavior in TransModeler. When Level 1 
Driver Assistance is assigned to a vehicle class in TransModeler, the user can choose whether 
the acceleration/deceleration task (e.g., car following or braking for a red light) or the modification 
of direction task (e.g., lane changing) is operated by the vehicle. When either the 
acceleration/deceleration or lane-changing tasks are operated by the vehicle, stochastic elements 
meant to represent driver heterogeneity (e.g., random error terms) are eliminated to remove the 
human element and reflect more deterministic behavior. When Level 2 is assigned to a vehicle 
class, both acceleration/deceleration and steering tasks are operated by the vehicle, and the 
stochastic elements for both tasks are eliminated. While there is no clear dividing line between 
Levels 2 and 3 in the simulation context, there are other aspects of driving, such as choosing a 
speed at which to travel, that can be emulated in the software to distinguish Level 3 from Level 2. 
When Level 3 is assigned to a vehicle class, the vehicle will drive at the advisory speed (i.e., the 
speed limit) when it is free to travel at an unconstrained, desired speed. Level 3 automation, thus, 
can have speed harmonization benefits in addition to the advantages afforded by Level 2 
automation. 

In addition to vehicle automation, there are technologies and strategies that are conditioned on 
communication and coordination between vehicles (e.g., CVs and CACC). With CACC, a vehicle 
chooses a headway at which to follow the leading vehicle, and short headways can be sustained 
because the direct communication allows for rapid responses to changes in the leading vehicle’s 
speed or proximity. Other related technologies considered for inclusion in the simulation include 
technologies that involve communication and coordination with infrastructure (e.g., vehicle to 
infrastructure, or V2I). V2I could, for example, regulate/harmonize speeds upstream of an incident 
or optimize traffic signal timings in real time. 
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In a simulation environment such as TransModeler, the line between driver and vehicle is not well 
defined, which makes it somewhat difficult to differentiate between the levels of automation. In 
much of the traffic simulation literature, in fact, the driver and vehicle are conflated, referred to as 
the “driver-vehicle entity,” or DVE. The same is true in TransModeler. It is unclear how driver 
intervention, which distinguishes Levels 3, 4, and 5 might be represented in a simulation model. 
Hence, Levels 3 through Level 5 are not yet differentiated in any substantive way in the current 
adaptations. 

3.3.2 Adaptation of a DTA for Simulating Connected Vehicles 
In CACC, vehicles use a feedback loop of measurement (of the position and speed of the vehicle 
in front) and acceleration (or deceleration) to maintain a safe and consistent following speed and 
distance or time headway. The project team assumes that vehicles operating in CACC will seek 
to maintain a desired following time headway. To achieve this, the project team implemented a 
constant time gap model (Wang and Rajamani, 2004): 

 

Figure 54. Equation. Constant time gap. 

where ai is the acceleration to be applied by the subject vehicle i, h is the desired constant time 
gap, dv is the difference in speed between the subject vehicle and the vehicle in front of it (vi – vi-

1), λ is a parameter, and δi is a deviation from the desired spacing given the desired headway and 
is calculated as: 

 

Figure 55. Equation. Desired headway calculation. 

where εi is the physical gap between the vehicles and L is the desired, or minimum, physical gap 
between the vehicles at zero speed (vi = 0). 

The constant time gap model can be found in numerous articles in the literature such as the paper 
previously cited as a reasonable approximation of an adaptive cruise control system. In the DTA 
software, the modeler can choose which classes or groups of vehicles operate with CACC. 

3.4 Testing and Validation of Adaptations 
To measure the impact of the model adaptations, a small simulation model was built of an 
approximately 2.5-mile section of a westbound five-lane freeway with on and off ramps. Sensors 
were placed on the mainline to measure the average flow per lane at several locations, including 
before vehicles arrived at the ramps and within weaving sections. For simplification, the results 
presented here focus on the flow located in the map below at the orange circle, where the 
maximum flow rates in vehicles per hour per lane (vphpl) in the model are observed. 

𝑎𝑎𝑖𝑖 = −
1
ℎ

(𝑑𝑑𝑑𝑑 + 𝜆𝜆𝛿𝛿𝑖𝑖) 

𝛿𝛿𝑖𝑖 = 𝜀𝜀𝑖𝑖 + ℎ𝑑𝑑𝑖𝑖 + 𝐿𝐿 
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Figure 56. Model network for testing adaptations. 

Tests were performed using an OD trip matrix with trips traveling from origins at Nodes 1, 2, or 3 
to destinations at Nodes 4 and 5. Hence, the AV and CACC adaptations were tested in the 
presence of several complex merge, diverge, and weaving behaviors that are commonplace in 
the real world and that call on all the aspects of driving that are subject to automation. The 
simulated traffic was also set to have a representative mix of vehicle classes, including passenger 
cars, single-unit trucks, tractor-trailer trucks, and motorcycles. 

In tests, the project team first determined the highest volume of traffic at which traffic flow could 
be stably sustained without breakdown or notable congestion. Then, the project team increased 
the volume in increments of 10% to simulate the impacts of the adaptations at different levels of 
network congestion. For the purposes of these tests, a scaling factor of 1.0 represents an 
uncongested existing condition. The maximum stable flow condition was observed at scaling 
factor 1.3, where the maximum flow rate simulated was about 1,885 vphpl. The project team 
analyzed the impacts of AV and CACC with scaling factors in steps of 0.1 between 1.3 and 1.8. 

Numerous scenarios were run, where a scenario is a combination of scaling factor and model 
adaptation. Scaling factors ranged from 1.3 to 1.8, and the following model adaptations were 
evaluated: AV Level 1a (acceleration/deceleration task automated), AV Level 1b (lane-changing 
(i.e. modifying direction) task automated), AV Level 2 (both acceleration/deceleration and lane-
changing tasks automated), AV Level 3 (AV Level 2 + travel speeds coordinated), and CACC. For 
each scenario, results from 10 simulation runs were averaged together. This test also assumed 
100% AV penetration to try to understand the maximum impact a given level of automation or AV 
technology might have. 

To isolate the effects of CACC from those of Level 3 automation, the project team assumed only 
the minimum AV level (Level 1a where the acceleration/deceleration task is automated) in the 
CACC scenarios. In the scenarios in which CACC was tested, a target following headway h of 1.0 
second was assumed, which falls in the middle of the range of CACC headways considered to be 
plausible in the literature. 
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An OD matrix of trips was defined where vehicles originate from Nodes 1, 2, or 3 and are destined 
for Nodes 4 or 5. The matrix was scaled up in increments of 10% to simulate the impacts of the 
adaptations at different levels of network congestion. For this study, scaling factors of 1.3 to 1.8 
were evaluated. Numerous scenarios were run where a scenario is a combination of scaling factor 
and model adaptation. For each scenario, results from 10 simulation runs were averaged. This 
test also assumed 100% AV penetration to try to understand the maximum impact a particular 
adaptation might have. 

The maximum flow/lane without any adaptations (i.e., assuming normal driving behaviors with no 
automation), the Base scenario, was approximately 1,950 vehicles per lane, and occurred when 
the scaling factor of the OD matrix was scaled with a factor of 1.3. In the Base scenario, as the 
scaler of the demand increases, flow declines because of increasing congestion, consistent with 
the fundamental traffic flow diagram. Figure 57 summarizes the flow rate served in all the 
scenarios evaluated, and Figure 58 summarizes the increase in flow relative the Base scenario 
at each demand scale. 

 
Figure 57. Simulated flow rate for a range of AV adaptation/demand scale scenarios. 

Figure 57 shows that the flow rate decreases as the demand increases, which reflects some 
combination of the downward trend in flow in the fundamental traffic flow diagram as density 
increases beyond a critical density upstream of the measurement location and demand starvation 
at the measurement location due to queuing at the upstream merge. 
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Figure 58. Change in flow rate for a range of AV adaptation/demand scale scenarios. 

According to Figure 58, only modest or negligible increases in capacity (0-2%) are achieved when 
only acceleration is automated (1a). It is likely that traffic operations in heavy merge, diverge, and 
weaving areas stands to benefit the most from the automation of steering (1b). When steering 
(i.e. modification of direction) is automated, lane changes that are motivated by human factors 
and that are not necessary to follow one’s path are minimized, which enables the more notable 
increases in capacity (1-8%) observed at Levels 1b, 2, and 3. Figure 58 also shows that CV 
technologies, like CACC, may have benefits that go beyond those of simple automation. The most 
significant improvements in capacity are observed when CACC is deployed, leading to increases 
in flow as high as 12%. Figure 57 and Figure 58 also show that the benefits increase as demand 
increases and congestion worsens. Interestingly, the steering automation and CACC have the 
potential to stem the decline in volume served that is evident in the Base condition. 

In sum, safety considerations aside, the benefits that AV/CV operations afford in terms of capacity 
may be modest or negligible with basic automation of acceleration tasks (i.e., Levels 1a). Rather, 
the most significant improvements are likely to be achieved when steering is automated or when 
another aspect of driving, one that brings about shorter following headways (i.e., CACC), is 
enabled through CV technologies. 
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4.0 Perform the Phase 1 Exploratory Runs and Report the 
Results 

This section describes the work completed under Task 5, which was to perform the Phase 1 
exploratory runs and report the results. Phase 1 sought to demonstrate the suitability of integrated 
ABM and DTA methods for EMA. A prototype demonstration of the EMA methodology was 
completed in Task 5 after the reasonableness and sensitivity of the integrated model system was 
demonstrated in Task 3, and after the methods for simulating various AV-related scenario 
assumptions were demonstrated and tested individually in Task 4. 

4.1 The Experimental Design 
Task 5 develop an extensive analysis to meaningfully demonstrate all phases of the EMA 
approach. Analysis was only constrained by the Phase 1 schedule and resources. For Phase 1, 
the project team restricted the input assumptions to be varied to four, with up to three levels of 
each to be tested. 

In the ABM: 

• The level of AV ownership among households. 

• The level of paid rideshare use and corresponding changes in auto ownership. 

In the DTA: 

• The level of allowance for AV operation (e.g., AV-only lanes). 

• The level of vehicle automation. 

A fractional-factorial orthogonal design was used to allocate the assumption levels to simulation 
runs, as shown in Table 15. The design includes 16 model runs of which a subset of the most 
interesting 5 were selected for Phase 1 due to long model runtimes. The project team plans to 
run all the scenarios in Phase 2 and to possibly extend the plan along additional dimensions if 
feasible. The coding for Table 15 is as follows: 

• AV ownership each ranging from base (B) or zero ownership to low (L), medium (M), and 
high (H). 

• AV sharing (e.g., paid rideshare service utilization) each ranging from base (B) or zero 
ownership to low (L), medium (M), and high (H). 

• Allowance for AV operation: nowhere in the network (N); anywhere in the network (A); 
exclusively in the left lanes on Interstates 10, 95, and 295 (L) (only in M and H demand 
scenarios); and exclusively on Interstates (I) (only in H demand scenarios). 

• Levels of vehicle automation technology each ranging from 0-5 covering the spectrum of 
degree of automation according to widely accepted definitions (see previous discussion 
of adaptation of DTA for AVs performed in Task 4), plus CV strategies such as CACC. 
These strategies are coded 0-5 and C to represent Level 3 automation and CACC. 
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Table 15. Experimental design for 16 scenario runs. 

# Ownership Shared Allowance Technology Comments 
0 B B N 0 Base 2010 
1 L H A 2 Run in Phase 1. 
2 M M L 3 Run in Phase 1. 
12 H L L 3 Run in Phase 1. 
14 H H A C Run in Phase 1. 
4 H H I C Run in Phase 1. 

5 L H L 3 L-H demand scenario with the other 
three supply scenarios besides A-2. 

6 L H A C L-H demand scenario with the other 
three supply scenarios besides A-2. 

7 L H I C L-H demand scenario with the other 
three supply scenarios besides A-2. 

8 M M A 2 
These are the M-M demand scenario 
with the other three supply scenarios 

besides L-3. 

9 M M A C 
These are the M-M demand scenario 
with the other three supply scenarios 

besides L-3. 

10 M M I C 
These are the M-M demand scenario 
with the other three supply scenarios 

besides L-3. 

11 H L A 2 
These are the H-L demand scenario 
with the other three supply scenarios 

besides L-3. 

3 H L A C 
These are the H-L demand scenario 
with the other three supply scenarios 

besides L-3. 

13 H L I C 
These are the H-L demand scenario 
with the other three supply scenarios 

besides L-3. 

15 H H L 3 
These are the H-H demand scenario 
with two supply scenarios other than 

A-C and I-C. 

16 H H L C 
These are the H-H demand scenario 
with two supply scenarios other than 

A-C and I-C. 

The experimental design in Table 15 requires doing 16 runs, which is a design of four demand 
combinations (L-H, M-M, H-L, H-H) times four supply combinations (A-2, L-3, A-C, I-C), except 
that for #16, which is L-C instead of A-2 in combination with H-H. The reason for this is to compare 
the three AV facility allowance options (A, L, I) in scenarios that all have the highest levels of 
automation (C) and use (H-H). Under A, L, and I, AVs can operate anywhere on the network. The 
restrictions are that in L, non-AVs are not allowed to use the left lane of interstates, and in I, non-
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AVs are not allowed to use the interstates at all inside the I-295, so it is about reserving existing 
capacity for AVs only. 

4.2 Confirming the Integration and DTA Model Adaptations 
The DTA model has the same geographic scope as that of the NFTPO regional model developed 
in Cube and DaySim. However, considerable additional local street detail far beyond that of the 
network used for the static assignments in the regional model had been added to the DTA model 
prior to this project to reach the parcel-level activity locations that serve as the origins and 
destinations of trips in the ABM. Even with the parcel-level street detail, the DTA network also 
retains TAZ centroids and centroid connectors in support of the freight, external, and special 
generator trips produced in TAZ-TAZ matrices by the trip-based part of the regional model. The 
coverage area spans four counties: Duval, Clay, Nassau, and St. Johns. The scale of the DTA 
model is shown in Figure 59. 

 

Figure 59. The four county DTA model in North Florida. 

   Source: Google Maps (Map data ©2018 Google) 
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To support the integration of the ABM and DTA, the project team modified the TransModeler 
scripts that automate the import of the tour and trip information produced by the ABM in DaySim 
to use TAZs rather than parcels as the origins and destinations of trips. This measure simplified 
the modeling process for the exploratory analysis in Phase 1 of the project; however, this will be 
revisited and likely revised in Phase 2. The motivation for simulating trips in the DTA from TAZ-
to-TAZ rather than from parcel-to-parcel was the ABM-DTA integration objective in Task 3. The 
ABM implementation expects skims from TAZ-to-TAZ. To compute skims from parcel-to-parcel 
would come at substantial cost in terms of computational expense. Additionally, the DTA’s design 
is such that it computes skims based only on the origins and destinations of trips, a process that 
does not lend itself to alteration. That said, the project team could alter the DTA to compute skims 
based on parcel trip ends and then aggregate those to TAZs prior to feedback to the ABM. This 
alternative will be attempted in Phase 2 of the project. Figure 60 illustrates the DTA model with 
TAZ centroids and with parcels in downtown Jacksonville. 

 
Figure 60. DTA network with centroids & connectors (left) and parcels (right) in Jacksonville. 

Google Maps (Map data ©2018 Google) 

The project team also verified that the DTA model functional properly and converged. The project 
team looked for the typical red flags that TransModeler routinely reports as indicators that the 
DTA network or demand is improperly specified. These red flags include the following: 

• Queuing outside the network where links connected to centroid connectors are too fully 
loaded with traffic to receive new trips attempting to depart. 

• Missed turns resulting in trips failing to follow their paths and reach their destinations, 
which may occur because of network coding errors or capacity insufficient to serve the 
demand at a particular location. 
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On reviewing these and other error indicators, the project team determined the DTA model 
specification to be suitable to proceed with exploratory runs. 

4.3 Exploratory Scenario Setup 
As described earlier, the exploratory scenarios are a hybrid of existing model components and 
new ABM-DTA components. To begin, an existing ABM with static skims model run was copied 
to create a new exploratory scenario. Next, the DaySim resident demand model was run for each 
scenario to generate a new set of trips, with the possibility of private AV ownership and AV 
sharing. The AM period trips were then run through TransModeler to produce dynamic skims for 
a.m. for AV and non-AV trips. The dynamic a.m. skims (and the transpose for p.m.) were then 
used for AM SOV, HOV, and AV network level-of-service (LOS) in DaySim, and a new set of trips 
was produced. This final set of trips is summarized in the next section. 

For Phase 1, the following base-year population and land-use scenarios were run through the 
integrated ABM-DTA model: 

1. FBB AM-N0: (B)ase (i.e., none) private AV ownership, (B)ase AV vehicle sharing, (N) 
AVs may not operate anywhere, and (0) level of automation. 

1. FHH AM-AC: (H)igh private AV ownership, (H)igh AV vehicle sharing, (A) AVs may 
operate anywhere, and (C) Level 3 automation + CACC. 

2. FHH AM-IC: (H)igh private AV ownership, (H)igh AV vehicle sharing, (I) AVs have 
exclusive use of some Interstates, and (C) Level 3 automation + CACC. 

3. FHL AM-L3: (H)igh private AV ownership, (L)ow AV vehicle sharing, (L) AVs have 
exclusive use of the left lanes on Interstates, and (3) Level 3 automation. 

4. FLH AM-A2: (L)ow private AV ownership, (H)igh AV vehicle sharing, (A) AVs may operate 
anywhere, and (2) Level 2 automation. 

5. FMM AM-L3: (M)edium private AV ownership, (M)edium AV vehicle sharing, (L) AVs have 
exclusive use of the left lanes on Interstates, and (3) Level 3 automation. 

As specified elsewhere, this is a more limited set of scenarios than planned for Phase 1 due to 
the challenges encountered in the ABM-DTA integration. 

4.4 TransModeler DTA Setup 
For the demand scenarios, ABM model runs were performed for certain combinations of the B, L, 
and H demand scenarios, and the output DaySim trip lists were imported into the TransModeler 
trip data table format for input to the DTA. To simplify the ABM-DTA integration for Phase 1, the 
project team held the trip-based part of the regional model fixed, relying on an unchanging 
estimation of the base-year freight, external, and special generator trip matrices. A temporal 
profile of demand was estimated from 15-minute traffic count data spanning Duval County and 
applied to the matrices to approximate a rise and fall in demand over the course of the AM peak 
in a temporal pattern consistent with observed data. The temporal curve is shown in Figure 61. 
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Figure 61. Temporal distribution of trips generated from the trip-based model matrices. 

In the supply scenarios L and I, the human driver must control all aspects of driving in AVs when 
not in the lanes (i.e., left lanes of interstates in supply scenario L) or on the facilities (i.e., on 
interstates in supply scenario I). These scenarios assume safety-motivated regulatory rules 
governing the operation of AVs on surface streets where collisions in intersections or conflicts 
with pedestrians and cyclists are a concern. 

Further, to remove a degree of uncertainty from a model of behaviors, systems, and scenarios 
that is replete with uncertainty, the project team chose to limit the Phase 1 exploratory runs to the 
a.m. peak hours, from 5:00 a.m. to 9:00 a.m. To simulate the a.m. period eases the burden of 
defining a critical boundary condition—the presence and pattern of traffic in the network at the 
beginning of the period to be simulated. A successful simulation of the p.m. peak would hinge on 
a reasonable loading of the network in the middle of the day, which is considerably more 
challenging than the more lightly loaded early morning hours. DTA for a 24-hour period is similarly 
challenging because traffic conditions later in the day hinge on stable, reasonable simulation of 
the preceding hours. The longer the period to be simulated, the more sensitive the simulation of 
later hours of the day will be to a reasonable, realistic simulation of the earlier hours, which hinges 
on a sound estimation of demand and an accurate representation of supply. Because all travel 
demand model demand requires adjustment or improvement in order to be simulated successfully 
with operational fidelity, the project team opted to avoid over-adjusting the DTA to the detriment 
of the focus of the analysis. 

4.4.1 Automation of Exploratory Runs 
To better facilitate the execution and management of multiple scenarios, the project team 
developed a script to automate steps performed to complete each run and to produce the desired 
output. These steps include the following: 

1. Copy the simulation network corresponding to the supply scenario over the copy in a 
working folder. 
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2. Open the DTA project file and make a copy of a base 2040 scenario, which defines the 
key inputs, such as the input matrices and time period, to a new, working scenario. 

3. Set as input to the working scenario the trip data table corresponding to the demand 
scenario. 

4. Set as input to the working scenario a parameter file defining the automation level and 
CACC parameters corresponding to the technology scenario. 

5. Run a short-term simulation to capture and save a loaded network state to represent traffic 
already in the network at 5:00 a.m., which is the start of the simulation. Set this initial state 
as input to the working scenario. 

6. Run the DTA for 50 iterations to produce output travel time and delay tables representing 
congestion patterns to inform route choices in subsequent steps. Set the travel time and 
delay tables as input to the working scenario. 

7. Repeat step five to update the initial state representing 5:00 a.m. such that vehicles in the 
network at 5:00 a.m. are following routes chosen based on the travel time and delay 
information produced by the DTA. 

8. Set the output settings to produce dynamic skims and run a simulation. 

9. Produce the dynamic, 30-minute skim matrices separately for AV and non-AV trips. 

In sum, the script automates what would otherwise be a series of steps performed by the user of 
the DTA software, minimizing model run time and user error. 

4.5 Results 
An important decision in EMA is which outcome variables to focus on and how to analyze and 
communicate the results. In this project, the outcome variables analyzed are mostly the same 
outcome variables used in model calibration and sensitivity testing in the earlier tasks. On the 
demand side, these include trip rates by person type, income level, purpose, time-of-day, auto 
ownership/type, mode shares by auto ownership/type, trip travel times and distances, and vehicle 
miles traveled. On the supply side, the DTA model lends itself to detailed analysis of the ways a 
strategy or technology might affect the performance of the transportation system and the levels 
of service that travelers experience. At the center of the DTA is a high-fidelity microsimulation 
model, which offers a wide range of measures of effectiveness (MOE) that the simulation model 
can produce, from local measures describing the performance of, for example, an intersection 
(e.g., queue lengths, signalized delay) to system-wide measures like overall vehicle miles traveled 
(VMT), vehicle hours traveled (VHT), and delay. Because the DTA model spans a region, the 
project team used the latter category of MOEs to describe the performance of the network under 
the various assumptions and scenarios that were modeled. In this analysis, the project team used 
the traditional definition of delay as the difference between experienced travel time and free-flow 
travel times. 
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For Phase 1, the six exploratory scenarios were summarized according to these key metrics: 

• Demand: 

o Average skim matrix travel times. 

o Trip and driver type mode shares. 

o Average trip speeds, distances, and household- and person-level VMT. 

• Supply: 

o Average skim matrix travel times. 

o VMT, VHT, and delay, by facility type. 

o DTA visualizations. 

4.5.1 Trip and Driver Type Mode Shares 
Trip mode and driver is a key metric in this EMA. Table 16, Table 17, Table 18, Table 19, Table 
20, and Table 21 summarize trips modes for the six scenarios using the static skims and the same 
six scenarios using the dynamic skims. These results were output by simulating the trips predicted 
with the static skims (essentially a second global iteration of DaySim). PCV is private conventional 
vehicle, PAV is private AV, and SAV is shared (TNC) AV. The auto demand and total trip demand 
increases slightly, which indicates that the travel times in the dynamic skims are lower than in the 
static skims. This is likely explained by the decision to use the transpose of the a.m. dynamic 
skims for the p.m. period—the static skims were more congested in the p.m. peak than in the a.m. 
peak. As shown in Table 18, the largest change in demand is in cells where there are few trips 
since the mode share does not change by more than 1% in any of the cells. Thus, the difference 
due to the skims is minor compared to the differences due to the input demand assumptions. This 
is likely a result of insignificant improvements in effective “capacity” in the network. 
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Table 16. Trips by mode with static skims, by exploratory scenario. 

Trips (Static 
Skims) FBB–N0 FLH–A2 FMM–L3 FHL- L3 FHH-AC FHH-IC 

PCV-Driver 4,064,086 1,291,988 996,398 205,379 87,018 87,018 
PCV-Passgr 1,466,680 1,509,433 926,903 141,810 117,858 117,858 
PAV-"Driver" -- 114,718 1,159,191 2,895,817 1,455,387 1,455,387 
PAV-Passgr -- 96,916 836,957 1,768,428 1,382,966 1,382,966 
SAV-"Driver" -- 2,424,427 1,543,000 573,945 2,552,686 2,552,686 
SAV-Passgr -- 584,192 375,698 142,317 612,821 612,821 
Walk 353,416 314,496 329,743 334,219 255,897 255,897 
Bike 86,788 77,391 70,617 58,509 54,839 54,839 
Transit 22,201 26,261 33,728 22,476 17,940 17,940 
School Bus 125,759 54,622 65,278 78,203 45,596 45,596 
Total 6,118,930 6,494,444 6,337,513 6,221,103 6,583,008 6,583,008 

Table 17. Trips by mode with dynamic skims, by exploratory scenario. 

Trips 
(Dynamic 

Skims) 
FBB–N0 FLH–A2 FMM–L3 FHL–L3 FHH-AC FHH – IC 

PCV-Driver 3,904,254 1,250,584 954,278 196,611 83,031 82,238 
PCV-Passgr 1,353,815 1,461,304 892,030 136,390 112,733 112,033 
PAV-"Driver" -- 117,877 1,154,198 2,847,766 1,427,823 1,426,896 
PAV-Passgr -- 97,440 822,984 1,725,803 1,344,445 1,344,882 
SAV-"Driver" -- 2,372,020 1,513,206 561,631 2,493,417 2,491,801 
SAV-Passgr -- 568,010 365,919 140,122 594,215 594,176 
Walk 558,000 422,388 420,631 410,861 368,369 368,772 
Bike 105,305 97,948 88,386 73,339 74,707 74,999 
Transit 44,393 26,934 33,834 22,494 18,308 18,245 
School Bus 117,568 49,582 59,365 71,657 40,738 40,639 
Total 6,083,335 6,464,087 6,304,831 6,186,674 6,557,786 6,554,681 
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Table 18. Difference in Trips by mode static versus dynamic skims, by exploratory scenario. 

Difference FBB–N0 FLH–A2 FMM–L3 FHL–L3 FHH-AC FHH A–IC 

PCV-Driver -3.9% -3.2% -4.2% -4.3% -4.6% -5.5% 
PCV-Passgr -7.7% -3.2% -3.8% -3.8% -4.3% -4.9% 
PAV-"Driver" -- 2.8% -0.4% -1.7% -1.9% -2.0% 
PAV-Passgr -- 0.5% -1.7% -2.4% -2.8% -2.8% 
SAV-"Driver" -- -2.2% -1.9% -2.1% -2.3% -2.4% 
SAV-Passgr -- -2.8% -2.6% -1.5% -3.0% -3.0% 
Walk 57.9% 34.3% 27.6% 22.9% 44.0% 44.1% 
Bike 21.3% 26.6% 25.2% 25.3% 36.2% 36.8% 
Transit 100.0% 2.6% 0.3% 0.1% 2.1% 1.7% 
School Bus -6.5% -9.2% -9.1% -8.4% -10.7% -10.9% 
Total -0.6% -0.5% -0.5% -0.6% -0.4% -0.4% 

Table 19. Percentage of Trips by mode static skims, by exploratory scenario. 

% of Trips 
(Static 
Skims) 

FBB–N0 FLH–A2 FMM–L3 FHL–L3 FHH-AC FHH – IC 

PCV-Driver 66.4% 19.9% 15.7% 3.3% 1.3% 1.3% 
PCV-Passgr 24.0% 23.2% 14.6% 2.3% 1.8% 1.8% 
PAV-"Driver" -- 1.8% 18.3% 46.5% 22.1% 22.1% 
PAV-Passgr -- 1.5% 13.2% 28.4% 21.0% 21.0% 
SAV-"Driver" -- 37.3% 24.3% 9.2% 38.8% 38.8% 
SAV-Passgr -- 9.0% 5.9% 2.3% 9.3% 9.3% 
Walk 5.8% 4.8% 5.2% 5.4% 3.9% 3.9% 
Bike 1.4% 1.2% 1.1% 0.9% 0.8% 0.8% 
Transit 0.4% 0.4% 0.5% 0.4% 0.3% 0.3% 
School Bus 2.1% 0.8% 1.0% 1.3% 0.7% 0.7% 
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Table 20. Percentage of Trips by mode dynamic skims, by exploratory scenario. 

% of Trips 
(Dynamic 

Skims) 
FBB–N0 FLH–A2 FMM–L3 FHL–L3 FHH-AC FHH-IC 

PCV-Driver 64.2% 19.3% 15.1% 3.2% 1.3% 1.3% 
PCV-Passgr 22.3% 22.6% 14.1% 2.2% 1.7% 1.7% 
PAV-"Driver" -- 1.8% 18.3% 46.0% 21.8% 21.8% 
PAV-Passgr -- 1.5% 13.1% 27.9% 20.5% 20.5% 
SAV-"Driver" -- 36.7% 24.0% 9.1% 38.0% 38.0% 
SAV-Passgr -- 8.8% 5.8% 2.3% 9.1% 9.1% 
Walk 9.2% 6.5% 6.7% 6.6% 5.6% 5.6% 
Bike 1.7% 1.5% 1.4% 1.2% 1.1% 1.1% 
Transit 0.7% 0.4% 0.5% 0.4% 0.3% 0.3% 
School Bus 1.9% 0.8% 0.9% 1.2% 0.6% 0.6% 
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 21. Absolute difference in trips, by mode static vs. dynamic skims. 

Abs. diff. 
mode share 

Diff. 
versus 
static 

FBB–N0 FLH–A2 FMM–L3 FHL–L3 FHH-AC 

PCV-Driver -2.2% -0.5% -0.6% -0.1% -0.1% -0.1% 
PCV-Passgr -1.7% -0.6% -0.5% -0.1% -0.1% -0.1% 
PAV-"Driver" -- 0.1% 0.0% -0.5% -0.3% -0.3% 
PAV-Passgr -- 0.0% -0.2% -0.5% -0.5% -0.5% 
SAV-"Driver" -- -0.6% -0.3% -0.1% -0.8% -0.8% 
SAV-Passgr -- -0.2% -0.1% 0.0% -0.2% -0.2% 
Walk 3.4% 1.7% 1.5% 1.3% 1.7% 1.7% 
Bike 0.3% 0.3% 0.3% 0.2% 0.3% 0.3% 
Transit 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 
School Bus -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% 
Total 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

4.5.2 Average Trip Speeds, Distances, and VMT 
Table 22 through Table 24 show the average trip speed by mode under the various EMA 
scenarios for both the static and dynamic skims as inputs to DaySim. The average speeds for the 
trips that are made are about 8% lower with the dynamic skims than with the static skims. They 
are especially lower for the shared AV trips, which are mainly in the more urbanized part of the 
area. This suggests that the AV skim speeds are lower than the conventional skim speeds. This 
could be because the AV trips are in different geographies. Table 25 through Table 29 show the 
average trip distances by mode under the various EMA scenarios for both the static and dynamic 
skims as inputs to DaySim. Table 30 through Table 38 summarize VMT across the EMA 
scenarios. 
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Overall, compared to the MM scenario, there is a slight increase in total VMT in the scenarios with 
high private AV ownership and a small decrease in total VMT in the scenarios with large shared 
AV use. This is because the high mileage-based cost and higher urban availability of the shared 
AVs means a shorter average trip distance, as noted above, for shared AV trips than for private 
AV trips. This is also why there is a lower average trips distance across all modes in the LH 
scenario (private AV low, shared AV high), even though there is a higher average trip distance 
across each of the vehicle modes separately. Some of the medium distance trips shift from private 
vehicles to shared AV, which raises the average trip distance for both the shared vehicles and 
the private vehicles. The relationship goes the other way when there are fewer shared AVs—
compared to the MM scenario, the average trip distance for each mode separately goes down, 
but the overall average trip distance goes up. 

Table 22. Average trip speeds, by mode with static skims. 

Static Skims FBBN0 FLHA2 FMML3 FHLL3 FHHAC FHHIC 
PCV-driver 43.3 45.0 44.5 43.9 43.8 43.8 
PCV-passgr 41.5 42.9 42.8 42.5 42.7 42.7 
PAV-main -- 46.3 46.0 45.6 45.7 45.7 
PAV-extra -- 43.6 43.3 43.0 43.4 43.4 
SAV-main -- 43.2 42.9 41.8 43.1 43.1 
SAV-extra -- 40.7 40.4 39.7 40.4 40.4 
Walk 2.5 2.5 2.5 2.5 2.5 2.5 
Bike 10.0 10.0 10.0 10.0 10.0 10.0 
Transit 6.5 6.4 6.3 6.2 6.4 6.4 
School bus 40.8 42.3 42.3 42.2 42.4 42.4 
Total 37.5 37.4 37.8 39.0 39.3 39.3 

Table 23. Average trip speeds, by mode with dynamic skims. 

Dynamic Skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 42.0 42.7 42.2 41.7 42.4 41.6 
PCV-passgr 41.2 41.5 41.1 40.8 41.5 40.8 
PAV-main -- 42.0 41.5 41.4 41.7 40.8 
PAV-extra -- 39.8 39.5 39.5 40.1 39.4 
SAV-main -- 39.9 38.8 37.5 39.0 37.9 
SAV-extra -- 38.2 37.2 36.2 37.0 36.4 
Walk 2.5 2.5 2.5 2.5 2.5 2.5 
Bike 10.0 10.0 10.0 10.0 10.0 10.0 
Transit 6.4 6.4 6.3 6.2 6.4 6.4 
School bus 39.5 40.4 38.6 37.4 37.9 37.1 
Total 33.7 34.5 34.5 35.2 35.3 34.6 
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Table 24. Average trip speeds difference dynamic vs. static skims. 

Static Skims FBBN0 FLHA2 FMML3 FHLL3 FHHAC FHHIC 
PCV-driver -3.0% -5.0% -5.3% -5.0% -3.2% -5.0% 
PCV-passgr -0.6% -3.4% -3.8% -4.0% -3.0% -4.4% 
PAV-main -- -9.3% -9.7% -9.2% -8.6% -10.8% 
PAV-extra -- -8.8% -8.7% -8.2% -7.7% -9.2% 
SAV-main -- -7.8% -9.5% -10.4% -9.5% -12.1% 
SAV-extra -- -6.0% -8.0% -9.0% -8.4% -10.0% 
Walk 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Bike 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Transit -2.8% 0.2% -0.5% 0.0% 0.2% 0.2% 
School bus -3.1% -4.6% -8.6% -11.4% -10.8% -12.5% 
Total -10.0% -7.8% -8.9% -9.7% -10.1% -12.0% 

Table 25. Average trip distances, by mode with static skims. 

Static Skims FBBN0 FLHA2 FMML3 FHLL3 FHHAC FHHIC 
PCV-driver 6.34 9.39 8.33 7.11 8.38 8.38 
PCV-passgr 5.37 6.94 6.47 6.01 6.70 6.70 
PAV-main -- 11.19 10.07 8.96 10.41 10.41 
PAV-extra -- 7.63 7.01 6.46 7.32 7.32 
SAV-main -- 5.10 4.73 4.11 5.01 5.01 
SAV-extra -- 3.69 3.49 3.18 3.57 3.57 
Walk 0.68 0.89 0.88 0.87 0.87 0.87 
Bike 2.35 4.92 4.01 3.00 4.24 4.24 
Transit 3.40 5.35 4.99 4.41 5.33 5.33 
School bus 4.57 6.60 6.29 5.98 6.98 6.98 
Total 5.67 6.21 6.56 6.99 6.48 6.48 

Table 26. Average trip distances, by mode with dynamic skims. 

Dynamic Skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 7.51 9.51 8.39 7.22 8.56 8.49 
PCV-passgr 6.42 7.10 6.61 6.14 6.85 6.83 
PAV-main -- 11.51 10.22 9.06 10.61 10.54 
PAV-extra -- 7.83 7.24 6.64 7.54 7.51 
SAV-main -- 5.21 4.82 4.17 5.12 5.10 
SAV-extra -- 3.79 3.56 3.24 3.67 3.66 
Walk 0.86 0.84 0.85 0.85 0.82 0.82 
Bike 2.74 4.53 3.78 2.97 3.80 3.81 
Transit 4.07 5.40 4.99 4.43 5.33 5.34 
School bus 5.51 6.96 6.69 6.30 7.42 7.39 
Total 6.51 6.22 6.58 7.02 6.51 6.48 
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Table 27. Average trip distances, by mode difference from FMML3 scenario (static). 

Static Skims FBBN0 FLHA2 FMML3 FHLL3 FHHAC FHHIC 
PCV-driver -23.9% 12.8% 0.0% -14.6% 0.6% 0.6% 
PCV-passgr -17.1% 7.3% 0.0% -7.1% 3.4% 3.4% 
PAV-main -- 11.1% 0.0% -11.0% 3.4% 3.4% 
PAV-extra -- 8.8% 0.0% -7.9% 4.3% 4.3% 
SAV-main -- 7.8% 0.0% -13.1% 5.9% 5.9% 
SAV-extra -- 5.9% 0.0% -8.7% 2.5% 2.5% 
Walk -23.3% 0.5% 0.0% -1.7% -1.0% -1.0% 
Bike -41.5% 22.8% 0.0% -25.2% 5.6% 5.6% 
Transit -31.9% 7.1% 0.0% -11.7% 6.7% 6.7% 
School bus -27.3% 5.0% 0.0% -4.9% 11.0% 11.0% 
Total -13.6% -5.4% 0.0% 6.6% -1.3% -1.3% 

Table 28. Average trip distances, by mode difference from FMML3 scenario (dynamic). 

Dynamic Skims FBBN0 FLHA2 FMML3 FHLL3 FHHAC FHHIC 
PCV-driver -10.4% 13.3% 0.0% -14.0% 2.1% 1.1% 
PCV-passgr -2.8% 7.5% 0.0% -7.1% 3.7% 3.3% 
PAV-main -- 12.6% 0.0% -11.3% 3.8% 3.1% 
PAV-extra -- 8.1% 0.0% -8.2% 4.2% 3.7% 
SAV-main -- 8.1% 0.0% -13.4% 6.2% 5.9% 
SAV-extra -- 6.7% 0.0% -8.9% 3.2% 3.1% 
Walk 0.9% -1.0% 0.0% -0.1% -3.7% -3.7% 
Bike -27.6% 20.0% 0.0% -21.3% 0.6% 1.0% 
Transit -18.4% 8.3% 0.0% -11.2% 6.7% 7.1% 
School bus -17.6% 4.0% 0.0% -5.8% 10.9% 10.5% 
Total -1.0% -5.5% 0.0% 6.7% -1.1% -1.5% 

Table 29. Average trip distances, by mode difference dynamic minus (static). 

Difference FBBN0 FLHA2 FMML3 FHLL3 FHHAC FHHIC 
PCV-driver 18.6% 1.2% 0.7% 1.5% 2.2% 1.2% 
PCV-passgr 19.6% 2.3% 2.1% 2.2% 2.3% 1.9% 
PAV-main -- 2.9% 1.5% 1.2% 1.9% 1.2% 
PAV-extra -- 2.6% 3.2% 2.9% 3.1% 2.6% 
SAV-main -- 2.1% 1.8% 1.4% 2.1% 1.8% 
SAV-extra -- 2.8% 2.0% 1.8% 2.6% 2.5% 
Walk 27.2% -4.8% -3.3% -1.7% -6.0% -6.0% 
Bike 16.5% -8.0% -5.8% -0.9% -10.4% -10.0% 
Transit 19.7% 1.1% 0.0% 0.5% 0.0% 0.3% 
School bus 20.6% 5.5% 6.4% 5.4% 6.4% 6.0% 
Total 14.8% 0.1% 0.3% 0.4% 0.5% 0.0% 
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Table 30. VMT with static skims. 

Static skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 25,756,129 12,137,078 8,298,843 1,460,738 729,335 729,335 
PAV-main -- 1,283,333 11,669,031 25,938,915 15,152,038 15,152,038 
SAV-main -- 12,366,071 7,304,004 2,360,363 12,798,425 12,798,425 
Total 25,756,129 25,786,482 27,271,878 29,760,016 28,679,798 28,679,798 

Table 31. VMT with dynamic skims. 

Dynamic 
skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 29,336,762 11,886,911 8,005,991 1,418,802 710,888 697,803 
PAV-main -- 1,356,355 11,793,591 25,803,300 15,143,528 15,038,176 
SAV-main -- 12,357,676 7,290,805 2,342,986 12,760,312 12,714,002 
Total 29,336,762 25,600,942 27,090,387 29,565,088 28,614,728 28,449,981 

Table 32. VMT Difference from the FMM scenario VMT with static skims. 

Static skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 210.4% 46.3% 0.0% -82.4% -91.2% -91.2% 
PAV-main -100.0% -89.0% 0.0% 122.3% 29.8% 29.8% 
SAV-main -100.0% 69.3% 0.0% -67.7% 75.2% 75.2% 
Total -5.6% -5.4% 0.0% 9.1% 5.2% 5.2% 

Table 33. VMT Difference from the FMM scenario VMT with dynamic skims. 

Dynamic skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 266.4% 48.5% 0.0% -82.3% -91.1% -91.3% 
PAV-main -100.0% -88.5% 0.0% 118.8% 28.4% 27.5% 
SAV-main -100.0% 69.5% 0.0% -67.9% 75.0% 74.4% 
Total 8.3% -5.5% 0.0% 9.1% 5.6% 5.0% 

Table 34. VMT Difference from the static skims. 

Dynamic skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 13.9% -2.1% -3.5% -2.9% -2.5% -4.3% 
PAV-main -- 5.7% 1.1% -0.5% -0.1% -0.8% 
SAV-main -- -0.1% -0.2% -0.7% -0.3% -0.7% 
Total 13.9% -0.7% -0.7% -0.7% -0.2% -0.8% 
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Table 35. VMT per Household Day (static). 

Static skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 45.1 21.3 14.5 2.6 1.3 1.3 
PAV-main -- 2.2 20.4 45.4 26.5 26.5 
SAV-main -- 21.7 12.8 4.1 22.4 22.4 
Total 45.1 45.2 47.8 52.1 50.2 50.2 

Table 36. VMT per Household Day (dynamic). 

Dynamic skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 51.4 20.8 14.0 2.5 1.2 1.2 
PAV-main -- 2.4 20.7 45.2 26.5 26.3 
SAV-main -- 21.6 12.8 4.1 22.3 22.3 
Total 51.4 44.8 47.4 51.8 50.1 49.8 

Table 37. VMT per Person-Day (static). 

Static skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 18.0 8.5 5.8 1.0 0.5 0.5 
PAV-main 0.0 0.9 8.2 18.2 10.6 10.6 
SAV-main 0.0 8.7 5.1 1.7 9.0 9.0 
Total 18.0 18.1 19.1 20.9 20.1 20.1 

Table 38. VMT per Person-Day (dynamic). 

Dynamic skims BBN0 LHA2 MML3 HLL3 HHAC HHIC 
PCV-driver 20.6 8.3 5.6 1.0 0.5 0.5 
PAV-main 0.0 1.0 8.3 18.1 10.6 10.5 
SAV-main 0.0 8.7 5.1 1.6 8.9 8.9 
Total 20.6 17.9 19.0 20.7 20.1 19.9 
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4.5.3 Average Skim Matrix Travel Times 
Table 39 and Table 40 illustrate the mean non-AV and AV a.m. travel times under the different 
levels of assumed private AV ownership, AV vehicle sharing, AV allowance, and vehicle 
automation. The mean travel times for the non-AV and VT user classes are similar under each 
scenario when measures at the regional level. Interestingly, all the AV scenarios result in similar 
or slightly higher average travel times, with the interstate restrictions for AV resulting in 
significantly more travel time regionally. These findings suggest AVs do not result in a significant 
improvement in system performance regardless of the exploratory scenario. 

Table 39. Mean dynamic non-AV skim value, by exploratory scenario—Travel Time (8:00 a.m.–8:30 a.m.). 

D.S./ 
Scenario FBB N0 FLH A2 FMM L3 FHL L3 FHH-AC FHH-IC Static Skim 

Mean 36.30 36.51 37.28 37.05 36.54 40.46 35.47 

Median 31.12 31.33 32.15 31.95 31.41 35.72 31.06 

Std. Dev. 23.18 23.30 23.69 23.45 23.29 24.50 22.98 

Minimum 0.06 0.06 0.06 1.47 0.07 0.09 0 

Maximum 192.41 190.84 193.25 193.01 193.62 194.16 290 

Table 40. Mean dynamic AV skim value, by exploratory scenario—Travel Time (8:00 a.m.–8:30 a.m.). 

D.S./ 
Scenario FBB N0 FLH A2 FMM L3 FHL L3 FHH-AC FHH-IC Static Skim 

Mean -- 36.55 37.32 37.05 36.58 40.46 35.47 

Median -- 31.34 32.17 31.95 31.42 35.72 31.06 

Std. Dev. -- 23.26 23.65 23.45 23.25 24.49 22.98 

Minimum -- 0.08 0.07 1.47 0.07 0.09 0 

Maximum -- 190.84 193.25 193.01 193.62 194.16 290 
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4.5.4 VMT, VHT, and Delay by Facility Type 
Table 41 through Figure 42 summarize VMT, VHT, and vehicle hours of delay, respectively, for 
various facility types: Interstate, Arterial, and Local. Interstate facilities represent most of the 
freeway system in the Jacksonville region. Because various supply scenarios restrict access to 
interstates or to the left lanes of interstate facilities, the VMT, VHT, and delay metrics are 
examined for interstates independently of arterial and local streets to make sure that any benefits 
that are observed on interstates are not offset by a deterioration in LOS on arterials or local 
streets. Because demand varies over time, the metrics are also summarized hourly. 

The findings indicate the emergence of AVs may have consequences that offset or outweigh any 
real benefit in terms of a reduction in VHT or delay. While previous tests demonstrated that 
different levels of automation and CV technologies may lead to modest increases in operating 
capacity in congested traffic, the increase in auto trips that accompanies the higher AV adoption 
scenarios is likely responsible for a far greater shift in LOS in the opposite direction. This shift 
explains the across-the-board increases in VMT, VHT, and Delay across all AV scenarios relative 
to the base demand scenario (i.e., BB). Under the most extreme demand assumptions (HH for 
example) as many as 70,000 additional trips are made relative to the base demand scenario. 
None of the supply strategies or AV technologies can meaningfully mitigate the increases in 
vehicle hours of delays most likely brought on by the increase in travel. 

However, supply strategies and AV technologies may provide some congestion-mitigating 
advantages relative to a scenario with the same demand assumptions but without the supply 
strategy or AV technology. Such is the virtue of EMA: that exploration of an initial set of scenarios 
may inspire or indicate another. In Phase 2 of the project, the number of scenarios analyzed will 
be greatly increased to better flesh out the relationships between the range of variables and 
assumptions enumerated in this analysis. 

Despite there being some limitation on the conclusions that may be drawn from the comparisons 
between the scenarios, two of the scenarios are based on the same demand assumptions (HH) 
and therefore present an opportunity to compare the advantages of differing supply and 
technology assumptions. In the HHAC and HHIC scenarios, the AVs are equipped with CACC 
technology. In the HHIC scenario, those AVs have exclusive access to the left lanes of the 
interstates outside of I-295 and on I-295 and have exclusive access to all interstates entirely inside 
I-295. In the HHAC scenario, the AVs may operate with CACC anywhere in the network but do 
not have exclusive access to any lanes or facilities. In comparing the HHIC and HHAC scenarios, 
it can be seen, as expected, that operating conditions on the interstates are characterized by 
fewer VHT and fewer hours of delay in the HHIC scenario than in the HHAC scenario. These 
benefits appear to be achieved without a notable or consistent deterioration in LOS on the arterial 
system. 
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Table 41. VMT summarized by facility type (interstate). 
VMT BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 429,648 474,000 465,090 528,324 444,971 481,602 

6:00 a.m. 641,431 861,718 859,192 947,223 802,034 868,836 

7:00 a.m. 744,196 1,033,802 1,048,297 1,114,110 967,915 1,048,211 

8:00 a.m. 670,142 931,991 926,047 1,001,746 826,956 928,020 

Table 42. VMT summarized by facility type (arterial). 

VMT BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 322,661 337,216 335,868 369,110 315,765 344,223 

6:00 a.m. 576,073 699,925 700,488 752,936 648,878 702,158 

7:00 a.m. 704,855 985,262 984,087 1,034,579 894,948 955,000 

8:00 a.m. 647,647 914,088 902,597 967,545 803,542 867,393 

Table 43. VMT summarized by facility type (local). 

VMT BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 3,137 2,602 2,500 2,834 2,509 2,522 

6:00 a.m. 6,372 5,548 5,646 6,046 5,298 5,564 

7:00 a.m. 8,260 8,670 8,950 8,079 7,618 8,318 

8:00 a.m. 7,093 8,233 8,514 8,637 7,219 7,638 
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Table 44. VHT summarized by facility type (interstate). 
VHT BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 7,013 7,733 7,692 8,792 7,309 8,048 

6:00 a.m. 10,906 15,378 15,305 17,792 14,437 16,063 

7:00 a.m. 13,097 21,298 21,127 24,851 19,513 22,035 

8:00 a.m. 11,262 18,053 17,557 21,323 16,132 18,984 

Table 45. VHT summarized by facility type (arterial). 

VHT BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 8,993 9,137 9,170 10,122 8,571 9,404 

6:00 a.m. 17,258 21,126 21,326 23,365 19,678 21,522 

7:00 a.m. 22,100 34,831 33,703 38,379 31,789 34,553 

8:00 a.m. 19,999 31,972 30,871 35,637 29,783 31,274 

Table 46. VHT summarized by facility type (local). 

VHT BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 127 101 99 111 96 99 

6:00 a.m. 268 231 241 258 219 236 

7:00 a.m. 355 381 395 362 344 402 

8:00 a.m. 299 363 379 380 328 344 
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Table 47. Vehicle hours of delay summarized by facility type (interstate). 
Delay BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 535 621 714 838 631 795 

6:00 a.m. 1,125 2,234 2,197 3,300 2,149 2,749 

7:00 a.m. 1,734 5,534 5,136 7,850 4,696 6,029 

8:00 a.m. 1,087 3,864 3,470 6,051 3,502 4,828 

Table 48. Vehicle hours of delay summarized by facility type (arterial). 

Delay BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 2,402 2,263 2,323 2,597 2,135 2,386 

6:00 a.m. 5,466 6,819 7,011 7,981 6,420 7,178 

7:00 a.m. 7,664 14,631 13,546 17,181 13,453 15,002 

8:00 a.m. 6,735 13,232 12,371 15,809 13,322 13,507 

Table 49. Vehicle hours of delay summarized by facility type (local). 

Delay BBN0 HHAC HHIC HLL3 LHA2 MML3 

5:00 a.m. 37 27 27 31 25 27 

6:00 a.m. 87 73 80 85 68 77 

7:00 a.m. 120 134 140 132 127 165 

8:00 a.m. 97 128 136 134 122 126 

Figure 62, Figure 63, and Figure 64 offer another view of the same data, summarizing VMT, VHT, 
and delay, respectively, for interstate facilities by hour and scenario. Figure 65, Figure 66, and 
Figure 67 summarize VMT, VHT, and delay, respectively, for arterial facilities by hour and 
scenario. Comparing these figures is helpful in light of the reasonable expectation that the supply 
assumptions that reserve exclusive access for AVs to some lanes or facilities may have 
consequences for arterial system that may serve as an alternative for non-AV trips. These figures 
show that the surface transportation system performs best when AVs are not present given the 
increases in VMT that appear to be a consequence of AVs for both the interstate and arterial 
system. Further, the worst-performing scenarios in terms of VHT and delay, HLL3 and MML3, are 
those that reserve the left lanes on all interstate facilities for AVs, which suggests, pending further 
exploration, that reserving the left lanes on all interstate facilities is not a good strategy, perhaps 
under intermediate AV adoption assumptions or under any circumstances. 
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Figure 62. Interstate VMT summarized by hour and scenario. 

 
Figure 63. Interstate VHT summarized by hour and scenario. 
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Figure 64. Interstate delay summarized by hour and scenario. 

 
Figure 65. Arterial VMT summarized by hour and scenario. 

 
Figure 66. Arterial VHT summarized by hour and scenario. 
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Figure 67. Arterial delay summarized by hour and scenario. 
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and flows, one can observe the animation of the vehicles to better understand traffic congestion 
patterns and where, how, and why certain bottlenecks form. Figure 69 and Figure 71 show a 
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AV scenarios. In Figure 68 and Figure 69, one can see in the simulation additional evidence 
supporting the comparison between the HHIC and HHAC scenarios previously discussed. In the 
image of the HHIC scenario, the back of queue of eastbound traffic headed for downtown 
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considerably farther to the west. This visual comparison of queue lengths confirms the previous 
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Figure 68. Visualization of back of I-10 Eastbound queue in HHAC scenario. 

Source: Image ©2018 Google 

 

Figure 69. Visualization of back of I-10 Eastbound queue in HHIC scenario. 

Source: Image ©2018 Google 
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In the images, the red vehicles are AVs, and the green vehicle are conventional vehicles. 
Conventional vehicles can scarcely be spotted in the HH demand scenarios, but in other 
scenarios, one may observe the interactions, for example, between autonomous and conventional 
vehicles.  Figure 70 and Figure 71 show simulations of the HLL3 and MML3 scenarios at same 
location on I-10. In the images, the greater number of conventional vehicles is evident. 

 

Figure 70. Visualization of back of I-10 Eastbound queue in HLL3 scenario. 

Source: Image ©2018 Google 

 

Figure 71. Visualization of back of I-10 Eastbound queue in MML3 scenario. 

Source: Image ©2018 Google 
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5.0 Challenges Encountered 
The project team encountered numerous challenges during the exploratory runs. These 
challenges are described below along with proposed implementations for Phase 2 of the project. 

5.1 TAZ-to-TAZ Trip Ends for ABM trips 
The decision to simulate the trips from TAZ-to-TAZ rather than from parcel-to-parcel allowed for 
the production of TAZ-to-TAZ dynamic skims for feedback to the ABM.  This was done to avoid  
more costly revisions that would have been required of either the ABM or DTA to support parcel-
to-parcel skims or to transform parcel-to-parcel travel times to TAZ-to-TAZ skims. However, this 
adversely affected TAZ-to-TAZ travel modeling, which is the effective distribution of trips among 
loading points (represented by centroid connectors) in a TAZ. Many TAZs in the DTA model are 
large and have dozens of centroid connectors to streets throughout the zone due to the high level 
of local street detail. A parcel-level simulation would have set the loading point to the street 
nearest to the parcel. However, when using centroids and centroid connectors, one must 
somehow regulate the spread of traffic across loading points via several means, all of which are 
imperfect, or risk exceeding capacity at loading points, at which point traffic waits outside the 
network in a virtual queue for an opportunity to enter the network, delaying departures and 
jeopardizing tour itineraries. The project team used travel costs reflecting the size of the zone to 
encourage a more diverse selection of loading points in Phase 1, but the mechanism does not 
prevent loading point overload. In Phase 2, the project team proposes devising a method to 
simulate the ABM trips parcel-to-parcel and aggregate their travel times to TAZ-to-TAZ matrices 
prior to feedback to the ABM. 

5.2 Model Running Times 
As described earlier, the relatively long DTA simulation times makes running many exploratory 
scenarios somewhat difficult. This issue is compounded by the need to run the ABM and the DTA 
together, in an iterative fashion, until reasonably converged. The project team will continue to look 
for ways to improve the DTA simulation times in Phase 2 since this represents the bulk of the 
overall integrated model runtime. 

5.3 Future-Year Demand and Supply Inconsistencies 
As is common in planning models, the 2040 forecasts predicted massive growth that is unlikely 
to be realized. The total forecast demand for 2040, between the ABM and trip-based matrices, is 
on the order of 1,270,000 trips, representing growth in traffic of almost 50% relative to the 
approximately 850,000 trips in 2010. This demand exceeds capacity in many parts of the network, 
leading to long queues by the end of the AM peak. This congestion, in turn, delays arrivals of 
earlier trips in tours, which delays activities, which delays departures of subsequent trips. At the 
end of the simulation, large numbers of travelers fail to complete their tours. When observed 
visually, the route choices and queuing patterns comport with reason and expectation. Surface 
streets and signalized intersections lack the capacity to serve the demand. The project team 
proposes to run the scenarios instead with 2010 demand so that the focus may remain on 
disruption that AVs and CVs may cause and to review the demand estimates to determine where 
they may be improved. 
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As a secondary effect of the heavy congestion, considerable resources were spent investigating 
the causes of queuing outside the network and of failed tours. While investigating, the project 
team noted shortcomings in the network coding (in terms of representing widening and other 
capacity projects constructed since 2010 and those that are anticipated for the future but for which 
no specific plans exist) that were not evident in the earlier DTA tests with 2010 demand. It was 
also determined that signal timings required significant adjustment to address some queuing 
problems. Numerous adjustments to the network and signal timings were made based on 
observations, but those adjustments proved only modestly effectual in resolving the congestion 
problem. The project team proposes in Phase 2 to gain a fuller understanding of the capital 
improvement projects that are likely to be built before 2040 or, as previously mentioned, address 
the issue of high forecast demand in the regional model. 

The heavy year 2040 congestion previously described has a tertiary effect of substantially 
increasing the model running times. Model running times are largely a function not of the size of 
the network but of the number of vehicles in the network at one time. With the 2040 forecast 
demand and the heavily congested condition of the network as time advances into the a.m. period, 
the model running times increased well above the times achieved in the 2010 tests. While some 
increase in running time will be expected with increased numbers of trips in future years, much of 
the increase in running times can be attributed to traffic queuing outside the network in large 
numbers and to large numbers of trips in a tour awaiting the completion of the prior trip and 
activity. The project team expects the model run times will once again become practicable when 
the congestion problem is resolved.
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6.0 Summary of Phase 1 Approach and Phase 2 Priorities 
6.1 Introduction 

This project integrated the DaySim ABM with the TransModeler DTA for the region of Jacksonville, 
Florida, as a basis for EMA. EMA is an approach developed by researchers to deal with “deep 
uncertainty.” The approach is different from typical scenario analysis in that it is designed to deal 
with many uncertain model relationships and inputs. While more standard scenario analysis might 
vary a few of the model inputs (e.g., future population growth and income levels), EMA is more 
appropriate in a future context where even the fundamental relationships or parameters of the 
model may be in question. Such a context is a “disruptive” technology like AVs and CVs. The 
EMA approach is similar in concept to the method for “quantitative risk analysis” (QRA) in 
forecasts described by Adler, et al.7 and to the method for “ridership and revenue risk analysis” 
described by Cambridge Systematics.8 

Table 50 summarizes the key similarities and differences between the QRA approach and the 
EMA approach. The first three steps—1) selecting output variables to analyze; 2) selecting input 
assumptions to vary and specific levels of those assumptions to test, and 3) using an experimental 
design to define a set of runs with different sets of inputs, and carrying out those runs—look similar 
between the methods. One important difference is that QRA focuses on a few key model 
outcomes (volume/ridership and revenues), while the EMA approach looks at many model 
outcomes. Secondly, QRA tends to focus mainly on exogenous input variables, such as 
sociodemographics while varying only a few key model parameters (e.g., the Cambridge 
Systematics study varies the alternative-specific constant for high-speed rail and one or two travel 
time coefficients). The EMA approach focuses more on uncertain model parameters and 
relationships and less on typical exogenous inputs. 

The later phases of the two approaches are quite different. The QRA method produces regression 
“meta-models” between the selected set of inputs and the key model outcomes and then uses an 
assumed multidimensional probability distribution of the inputs to carry out Monte Carlo 
application of the regression model to generate probability distributions of the outcomes. For an 
EMA context, such as AV futures, there is too much uncertainty to provide meaningful probability 
distributions on the input assumptions or to generate meaningful quantitative risk assessments 
on the outputs. Rather, the EMA approach can use several analysis techniques, including 
graphical surface analysis, regression models, correlation analysis, and other exploratory 
statistical methods. The objective is to gain a better understanding of the sensitivity of the outputs 
to each input variable and possibly to interactions of the input variables. EMA is often done 
iteratively—after learning more about the model responses, one can refine the input assumptions 
or the model specification and perform additional phases of exploratory analysis. 

                                                           
7 Adler, et al. 2014. Methods for Quantitative Risk Analysis for Travel Demand Model Forecasts 
8 Cambridge Systematics, 2016 California High-Speed Rail Business Plan Ridership and Revenue Risk Analysis, 
Technical Report 

http://trrjournalonline.trb.org/doi/abs/10.3141/2429-01
http://www.hsr.ca.gov/docs/about/ridership/DR1_2016_CAHSRA_Business_Plan_Risk_Analysis_Documentation.pdf
http://www.hsr.ca.gov/docs/about/ridership/DR1_2016_CAHSRA_Business_Plan_Risk_Analysis_Documentation.pdf
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Table 50. Comparison of QRA vs. EMA. 

QRA of Forecasts EMA 

Select one or two key outputs (e.g., ridership and 
revenues). Select a range of outputs to explore. 

Select a set of key input assumptions to vary and 
levels to test. Inputs focus on sociodemographic 
inputs and a few key model parameters (e.g., toll 
bias or new mode constants).  

Select a set of key input assumptions to vary and 
levels to test. Inputs cover several model 
parameters and relationships with less emphasis 
on sociodemographic inputs. 

Use an experimental design to define a set of 
model runs to test effects of assumptions. Do the 
model runs and save the outputs. 

Use an experimental design to define a set of 
model runs to test effects of assumptions. Do the 
model runs and save the outputs. 

Use regression analysis to model the key outputs 
as a function of the input assumption levels. 

Use regression analysis, charts, maps, and any 
other useful presentation methods to explore the 
various model outputs as a function of the 
multidimensional variation in the inputs. 

Define the joint probability distribution of the input 
assumption levels.  

N/A. Too much uncertainty about the input 
assumptions to assess probabilities. 

Apply the regression model to thousands of sets 
of input assumptions, drawing each set randomly 
from the joint probability distribution to create a 
probability distribution of the key model outputs. 

N/A. Too much uncertainty to generate probability 
distributions of the outputs. 

6.2 Summary of the Phase 1 EMA Approach 
The first task of Phase 1 was to more tightly integrate the DaySim ABM and the TransModeler 
DTA, both of which had already been implemented for Jacksonville. As part of this work, the 
feedback between DaySim and TransModeler was enhanced in important ways. First, the DaySim 
trip outputs include a new mode (Paid Rideshare) and a new level for the DORP Type attribute 
(Passenger in an AV). DaySim also uses separate travel time and cost skims for AVs, which 
means that TransModeler will treat AVs as a separate “user class” and pass back AV-specific 
skims. 

A key challenge being dealt with was the production of dynamic skims—using the TransModeler 
simulated travel times to update the OD travel time matrices that are fed back to the DaySim 
demand model. As discussed throughout this report, this was especially challenging due to 
several DTA modeling challenges, including long runtimes, network entrance and exit (i.e., 
loading point) issues, and heavy congestion (i.e., gridlock). 

The second task focused on adapting the ABM and DTA models to accommodate key dimensions 
of uncertainty in the context of AVs. The following model input and parameter assumptions can 
now be modeled and varied because of the Phase 1 work: 

• The level of AV ownership among households. 

• The level of paid rideshare use and corresponding changes in auto ownership. 



Integrated ABM DTA Methods to Evaluate Impacts of Disruptive  
Technology on the Regional Surface Transportation System 

December 2017  107  

• The level of allowance for AV operation (e.g., AV-only lanes). 

• The level of vehicle automation. 

The project team also proposed using a fractional-factorial experimental design to allow the 
analysis of the independent effect of each level of each assumption. For example, the four 
different assumptions listed above can be accommodated using an experiment design with 16 
runs. In the end, only six scenarios were run and analyzed due to the issues noted earlier. 

6.3 Summary of the Phase 1 EMA Findings 
The Phase 1 EMA suggests the transportation system performs best when AVs are not present 
because of increases in VMT that appear to be a consequence of AVs for both the interstate and 
arterial systems. However, the work to date also suggests that many more scenarios must be run 
to draw more comprehensive conclusions. Phase 1 compared the performance of each scenario 
to FBB–N0 as a baseline, but there are enough extra trips in the FMM, FLH, FHH, and other trip 
tables that it is not possible to tell whether a supply strategy or technology will provide any benefits 
relative to a FBB scenario. If the delay increases, it may simply be a consequence of the change 
in trip-making. Thus, in Phase 2, the project team plans to run the complete set of scenarios—
four of the most interesting demand scenarios, each with four different supply scenarios, to 
analyze what is causing the differences. The project team also plans to address several simulation 
issues, including the appropriate level of network loading (e.g., TAZs vs. parcels). 

6.4 Phase 2 Priorities 
The highest-priority work for Phase 2 is to improve the integrated ABM-DTA model so it can more 
easily be used for the EMA analysis. Long runtimes and heavy congestion due to various network 
simulation issues will likely continue to plague this project if not satisfactorily resolved. Issues to 
be resolved include the following: 

• Load trips onto the network at the parcel level instead of the TAZ level. 

• Clean up the network, intersection geometry, and signal timing. 

• Produce dynamic skims that reasonably match observed travel time estimates from 
sources like Google Maps. 

• Possibly move to a future-year scenario in order to experience more congestion, which 
may result in greater benefits from CAVs.  However, this may backfire as demand may be 
forecasted to be unrealistically related to supply, or vice versa. 

Based on interest of FHWA and the project team, the Phase 2 EMA will model vehicle sharing 
behavior and empty vehicles in more detail and more thoroughly address parking options. On the 
demand side in DaySim, these changes will include being able to represent different assumptions 
regarding the following: 

• Changes in intrahousehold ridesharing/chauffeuring behavior due to AV ownership (and 
associated changes in the generation of empty vehicle trips). For example, an AV may 
drop off a household commuter then return home empty to be available for any nonworkers 
until it has to pick up the commuter at the end of the work day. 
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• These household decisions should also reflect parking availability for AVs at the 
destinations as that may influence the relative attractiveness of returning home. 

On the network side in TransModeler, these changes will include being able to represent different 
assumptions regarding the following: 

• The way in which paid ridesharing services route and locate vehicles when empty. While 
it would be difficult to model an “optimal” system, some reasonably efficient behavior 
should be possible to simulate. (This could influence the typical passenger wait times that 
are passed to DaySim.) 

• Different treatment of empty vehicle trips on the network. For example, empty vehicles 
could be prohibited from using congested facilities during peak periods. 

• The location and supply of parking, including super-stacked or remote parking for self-
parking vehicles. (Only off-street parking will be dealt with explicitly, and, due to schedule 
constraints in Phase 2, it will likely be necessary to make simplifying assumption about 
the way that parking supply is represented.) 

In addition to the specific model system revisions described here, the project team will address 
the following questions when developing the Phase 2 work plan: 

• Should the sources of uncertainty that were already modeled and analyzed in Phase 1 be 
modified in any way, including new levels to test or new ways of incorporating them into 
the ABM and DTA models? 

• Should additional sources of uncertainty be added to the analysis? If so, how should those 
new input assumptions be incorporated into the ABM and DTA models, and what specific 
levels should be tested in simulation? 

• How should the EMA experimental design be modified? 

o Should new input assumptions or levels be added into the analysis? 

o How successful was the Phase 1 experimental design? 

o The phase 1 model run times are quite long.  How should the  phase 2 
experimental design be revised as a result? 

• Based on the effectiveness of the methods used in Phase 1 to analyze and communicate 
the outcomes, how can the analysis and visualization methods be enhanced for Phase 2? 

• What are the best visualizations for explaining the EMA results? This is especially 
importation when presenting results of unknown input distributions.
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