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ABSTRACT 
Since their emergence over a decade ago, hybrid travel demand models have become a popular alternative 

to both traditional four-step trip-based models and advanced activity-based models.  A new generation of 

the Triangle Regional Model, or TRMG2, was recently developed for the Research Triangle region of 

North Carolina and serves as a contemporary example of a hybrid travel demand model.  This paper 

provides an overview of the structure of the model and highlights innovative and distinguishing 

characteristics.  The novel innovations include the use of machine learning methods for disaggregate, 

person-level trip production modeling and the use of nested logit models for destination choice.  The 

TRMG2 also uses the linkage of non-home-based trips to home-based trips by location and mode as has 

become standard practice in recent hybrid models in place of the stop location and sequence choice 

models in earlier hybrids.  The paper concludes with a summary of several sensitivity analyses performed 

on the model which demonstrate that the TRMG2 provides nuanced and realistic behavioral responses to 

various policy interventions.   

Keywords: hybrid, Triangle, TRMG2, machine learning, nested destination choice, non-home-based 
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INTRODUCTION 

Many Metropolitan Planning Organizations (MPOs) across the country have moved or are moving 

towards activity based models. This shift is driven in large part by advanced models’ ability to better capture 

travel choice, and to provide a greater array of performance measures. On the other hand, many MPOs have 

been reluctant to make such a shift given the cost, complexity, and technical requirements of activity based 

models. The choice of whether to move away from an advanced trip based model to an activity based model 

was one recently considered by the Research Triangle region of North Carolina. With a greater focus on 

more diverse transportation projects and policies, a desire for better performance measures, and the demand 

being placed on the exiting trip based model by the consulting community, it was clear that a new paradigm 

was needed. What was not clear was whether that new paradigm would be an activity based model. While 

the needs of the region would seem to make an activity based model a clear choice, many were reluctant to 

take such a leap citing the aforementioned challenges. For the Research Triangle region, the choice became 

one that is not fully trip based, not fully activity based, but rather a hybrid approach. In a sense, a path that 

allows the region to evolve the Triangle Regional Model (TRM) over time while taking advantage of more 

immediate improvements. This stepped approach resulted in a model that is simple and easy to use, without 

sacrificing technical excellence and best practice. It is a model that was built with the end user in mind.    

OVERVIEW OF THE TRIANGLE REGION 

The Research Triangle region is unique in many ways. Rather than being defined by a strong central 

urban core, the region is multinucleated with several strong cities with varied and sometimes competing 

economies. Transportation planning in the region is led by two MPOs: Durham-Chapel Hill-Carrboro MPO 

to the west, and the Capital Area MPO to the east. At the heart of the region is the Raleigh-Durham 

International Airport, and Research Triangle Park (RTP). The region’s name stems from the confluence of 

three tier one research universities, North Carolina State University, Duke University, and the University 

of North Carolina at Chapel Hill; together these universities form something of a Triangle, with RTP 

somewhat at the center, see Figure 1.  (The economy of the region is largely driven by technology and 

biotech industries. The region is also home to North Carolina state government and has a very affluent and 

highly educated population.  

Like many regions across the country, the region’s demographics are changing. Recent Census and 

travel survey data show a population that is aging, but also a senior cohort that is active and traveling more. 

Household size is getting smaller with more single person and 2-person households with no kids. Surprising, 

given the auto dominance of the region, is an increase in the number of zero car households. And finally, 

the region is seeing emerging development patterns and increased interest in higher density mixed use 

development.  
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FIGURE 1 The Research Triangle Region of North Carolina 

BACKGROUND 
Hybrid travel demand models emerged over a decade ago as an attempt to balance the benefits and costs 

of advanced travel modeling (1,2,3).  Since then, hybrid models have also been developed as an 

incremental step on the way to development of a full activity-based model (4).  Hybrid models have now 

been developed for numerous metropolitan areas including Jerusalem; Vancouver, BC; Charleston, SC; 

Hampton Roads, VA; Knoxville, TN; Indianapolis, IN; Ann Arbor, MI; and several smaller metropolitan 

areas in Indiana and Virginia as well as the Raleigh-Durham-Chapel Hill Triangle region presented here.  

The Las Vegas MPO has also recently begun development of a hybrid model.  The hybrid approach has 

also been particularly popular for statewide models being used in those for North Carolina, Tennessee, 

Illinois, Michigan, Iowa, Nebraska, and New Mexico.  The spread of hybrid models has been aided by 

publications by the Federal Highway Administration’s Travel Model Improvement Program (TMIP) 

which have showcased hybrid methods (5,6).  

Hybrid models can be distinguished from activity-based models by the fact that they include at 

least some aggregate components, while they can be distinguished from traditional trip-based models in 

that they make some connections between trips, offer improved consistency with tours, and generally 
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have at least some disaggregate components (6).  Not all advanced trip-based models are hybrids.  Time-

of-day or destination choice modeling or more refined trip purposes or modes do not fundamentally alter 

the four-step framework.  Hybrid models include fundamental changes to the model structure and 

resulting behavior through connecting home-based and non-home-based trips and ensuring basic 

consistency of the model with tours.  Hybrid models often make use of both trip-based and tour-based 

segmentation as in the new generation Triangle Regional Model, or TRMG2.  Hybrid models typically 

begin with population synthesis followed by some disaggregate model components.  Sometimes these 

components are the same as those used in activity-based models, but other times, as in the TRMG2, these 

components are different in that they do not make use of Monte Carlo simulation but rather use expected 

values.  Midway through the model stream hybrid models shift to aggregate components.  Usually, but 

not always, destination choice is modeled in aggregate.  Mode choices can be modeled in the disaggregate 

before destination choice (7) or in aggregate after it.  The TRMG2 illustrates both options with 

disaggregate non-motorized mode choice prior to destination choice and aggregate motorized mode 

choice after it.   

OVERVIEW OF THE TRMG2 
Several data collection efforts together provided a firm foundation for the development of the 

new TRM.  The partner agencies began conducting a recurring regional household travel survey in 2016 

with additional sample collected in 2018.  The transit agencies in the region had last conducted on-board 

surveys in 2014 and 2015, and the partner agencies also conducted a parking behavior survey in 2016 

which was instrumental in developing the new parking models.  A survey of NCSU students from 2012 

and a 2010 commercial vehicle travel survey were also used.  External travel patterns were taken from the 

North Carolina Statewide Travel Model.   

The overall structure of the TRMG2 is presented in Figure 2.  Strictly speaking, this structure is 

only for the resident passenger models.  The TRMG2 also includes auxiliary demand models for trucks 

and commercial vehicles, university students, the airport, and external trips.  The university student 

models use a similar, but slightly simplified aggregate hybrid framework with a single mode choice.  The 

other auxiliary models are simple trip-based models.   
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FIGURE 2 The TRMG2's Hybrid Structure 

Component Variables 

Zonal Socioeconomic Data 

The TRMG2 contains 2,965 internal traffic analysis zones and 97 external stations.  The 

demographic variables include the number of households, median household income, household 

population, percent of the population working, percent of the population under 18, percent of the 

population age 65 and above, and the number of university students by school.  Employment is provided 

in five categories as well as the percent of employees earning more than $40,000 per year.  

Networks and Travel Times 

A new network was developed for the TRMG2 including all local streets.  The base networks 

include 234 transit routes and 128,015 links modeling 16,477 miles of roadway.  While the model’s 

traffic assignment still uses centroid connectors and ignores local streets and roads, the inclusion of minor 

streets was instrumental for both the non-motorized and transit components of the model.  The non-

motorized models are sensitive to the density and connectivity of local streets with increased walking and 
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biking with denser and connected networks.  The transit network uses the local streets as an elegant walk 

access alternative to a multitude of centroid connectors. The inclusion of the local streets also eliminates 

the common problem of transit routes traveling over roads not included in the traffic assignment network.  

Accessibilities 

At the beginning of the model’s execution, the zonal socioeconomic data and network travel 

times are used together to calculate several accessibility variables.  Accessibilities are calculated for 

roadway, transit, and non-motorized modes, to various attractions and with different distance decay 

functions.  As shown in Figure 2, the accessibilities are used in many of the model components to capture 

sensitivity to behavioral responses to urban form, area type, and proximity of attractions nearby.   

Disaggregate Demand Models 

Population Synthesis 

The TRMG2 makes use of the population synthesis native in the TransCAD software in which 

the model is implemented.  This iterative proportional updating (IPU) algorithm is fast and generates a 

synthetic population of over 1.8 million people for the TRMG2 in roughly two minutes.  This speed 

allows the population synthesis to be included as an automated part of the model run rather than a 

separate pre-process.   

The synthetic population is controlled at the household level for household size, number of 

workers and income and at the person level based on age groups (children under 18, adults aged 18 to 64, 

and seniors aged 65 and up).  Figure 3 illustrates the ability of the iterative proportional updating to match 

person level controls where iterative proportional fitting alone without IPU fails.   

FIGURE 3 The Effect of IPU on Matching Person Level Controls 

The TRMG2’s population synthesis also includes curves for producing ordinal level controls 

(e.g., one-person households, two-person households, etc.) from average zonal characteristics (e.g., 

average household size).  These curves, illustrated in Figure 4, allow the partner agencies to only forecast 

zonal average characteristics for future year scenarios rather than discrete distributions for each zone.   
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FIGURE 4 Ordinal Number of Persons per Household by Average Zonal Household Size 

Vehicle Ownership Choice 

Vehicle ownership is modeled in the TRMG2 as a long-term choice made by each household.  

The multinomial logit model is used to predict the choice of zero, one, two, three, and four or more 

vehicles for each household.  The model is sensitive to household income and composition as well as 

accessibility by walk, transit, and driving.  Thus, improvements to any mode can in the long run impact 

the number of vehicles in the region and in that way indirectly as well as directly the resulting mode 

choices.   

Home-based Trip Productions 

The TRMG2 generates the expected daily number of trips for each individual person in the region 

for each of 14 types of trips.  The machine learning methodology for these models is highlighted in more 

detail in a subsequent section as one of the novel innovations of the TRMG2.  At the highest level, trips 

were segmented based on whether they were on a work tour (36.2%) or nonwork tour (63.8%) since these 

tour types have very distinct characteristics in terms of destinations, modes, and time-of-day. Trips on 

each tour type were then divided into home-based trips (HB) (trips with one end at home) and non-home-

based trips (NHB).  The trips were further divided into the full 14 trip types through an exploratory 

analysis of the household survey data, distinguishing trips with different lengths, mode shares, and time 

of day distributions.  Home-based trips on work tours were divided into work (W-HB-W), escort to 

school (W-HB-EK12), and other (W-HB-O).  Non-home-based trips on work tours were divided into 

school escort (W-NH-EK12), work related (W-NH-WR), and other (W-NH-O).  Home-based trips on 

nonwork tours were divided into school (N-HB-K12), other long duration discretionary activities (N-HB-

ODL), other short duration discretionary activities (N-HB-ODS), other maintenance, shopping and eating 

(N-HB-OME), and other medical trips (N-HB-OMED).  Non-home-based trips on nonwork tours were 

divided into school (N-NH-K12), other maintenance/eat out (N-NH-OME), and other (N-NH-O).   

Figure 5 shows the contribution of each of the 14 trip types to total person-miles-of-travel for the region 

based on the survey.  Figure 6 and Figure 7 illustrate the distinct modal and temporal distributions of the 

trip types.   
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FIGURE 5 Person Miles of Travel by Trip Type 

FIGURE 6 Mode Shares by Trip Type 
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Home-based Nonmotorized Mode Choice 

The choice to walk or bike for a trip is made at the level of an individual’s trips.  A binary logit 

model for each HB trip type predicts the expected number of the total trips which are motorized and 

nonmotorized.  The models are sensitive to vehicle ownership, age, presence of children in the household, 

income, employment status, walkability of the zone and accessibility of attractions by walking.   

Home-based Time-of-Day 

An individual’s home-based trips are apportioned to four time-of-day periods (AM: 7:00 AM – 

9:00 AM, MD: 9:00 AM – 3:30 PM, PM: 3:30 PM – 6:15 PM, NT: 6:15 PM – 7:00 AM) based on fixed 

factors from the survey for each trip type.   The factors for all trip types from the survey are shown in 

Figure 77.  Following the time-of-day factoring, trips are aggregated to zones for subsequent models.   

FIGURE 7 Time-of-Day Shares by Trip Type 

Home-based Destination Choice 

The HB destination choice models are the first aggregate model component in the TRMG2.  They 

are discussed in more depth in subsequent section as they are one of the innovations of the TRMG2 in 

using nested logit models for destination choice.   

Home-based Motorized Mode Choice 

The HB motorized mode choice models are nested logit models as are common for this purpose.  

The nesting structure for the HB work trips on work tours (W-HB-W) is shown in Figure 8.  
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FIGURE 8 Work Trip Mode Choice Nesting Structure 

The model departs slightly from traditional structures in that it includes separate nests for 

automobiles owned by the household and other automobiles not owned by the household.  The other 

automobile nest includes two modes: borrowed car and paid car.  Since the rise in popularity of Uber and 

Lyft, paid car services (also including traditional taxis and rental cars in the TRMG2) have received more 

attention in travel modeling.  The phenomenon of people borrowing cars from friends or neighbors on the 

other hand has been largely ignored in traveling modeling even though household travel surveys 

consistently indicate the significance of this mode for travelers who do not own a vehicle.  As the survey 

for the Triangle also clearly confirmed this mode as significant, it was modeled explicitly in the 

TRMG2’s mode choice.   

Non-home-based Trip Generation 

Non-home-based trips are generated in the TRMG2 based on the destinations of HB trips by 

mode.  Because this is a distinguishing feature of the TRMG2 from earlier hybrid models, these models 

are highlighted in detail in a subsequent section.   

Non-home-based Destination Choice 

The spatial distribution of NHB trips is accomplished in the TRMG2 through the use of doubly 

constrained multinomial logit destination choice models.  Since there were not enough observations to 

support the estimation of separate models for each combination of trip type and mode, the trips were 

grouped into NHB auto trips on work tours, NHB auto trips on nonwork tours, NHB transit trips, and 

NHB walk/bike trips.   

Parking Choice Models 

Parking is limited and priced in the downtown and campus areas of the Triangle region, and some 

of these areas have free transit between them and remote parking.  Therefore, the new TRMG2 

incorporates parking choice models.  These models, based on the 2016 parking survey, predict the zone 

where the driver will park and whether they will walk or ride a free shuttle based on their destination and 

the number and price of parking spaces in the zones.  Separate models were specified for downtown and 

campus areas.  As shown in Figure 9, both models were combined mode and destination choice models 

with mode (walk or shuttle) nested over parking zones.  By including the root logsum of these choice 

models in the utility of the auto modes, travelers’ mode and destination choices are also made sensitive to 

parking considerations. 
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FIGURE 9 Parking Choice Models 

TRIP PRODUCTION MODELS 
While the TRMG2 shares many characteristics with other hybrid models, it also introduced two 

new innovations. The first of which are the HB trip production models which make use of machine 

learning (ML) methods.  The HB trip production models are person-level models, applied to individual 

people in the synthetic population.  These models can and do still make use of household characteristics 

but can also use person characteristics like age as explanatory variables.  Although a form of decision 

trees was ultimately selected for the models, all the traditional forms of trip generation model were also 

tested.  Initially, the tested models included cross-classified trip rates, generalized linear regression 

models, logit models, and XGBoost (8), a form of decision tree model similar in some ways to random 

forests.   

School trips (N-HB-K12) will be taken as an example, although the results were similar across 

the various trip types.  A cross-classification model was estimated to serve as a frame of reference. 

Average school trip rates (K12) were stratified by the person’s age and the total number of children in 

their household. As is common with cross-classification models, attempting to add more dimensions (like 

income groups), exhausted the limited samples in the survey and led to non-significant and counter-

intuitive estimates.  After testing several forms of generalized linear models (GLM), a zero-inflated 

negative binomial model gave the best results.  The model was able to incorporate more explanatory 

variables, but its goodness-of-fit was inferior to the cross-classification model.  GLMs have sometimes 

been used in hybrid models in order to provide sensitivity to more variables than cross-classification 

supports, but it has only more recently been recognized that this comes at a cost of being less able to fit 

the non-linearities in trip rates.  Ordinal logistic regression or ordered logit models were also estimated as 

these had been used in the prior version of the TRM.  However, these models performed the poorest of all 

those tested.  The reason seems to be the large number of persons making zero trips.  Various attempts to 

address this, such as excluding adults without children from the model, did not result in any meaningful 

improvements.  Table 1 shows the goodness of fit metrics for the various model forms attempted. 
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TABLE 1 Goodness-of-Fit of Various Trip Generation Models (School Trips) 

Model Type (Pseudo) r2 

Ordered Logit 0.03 

GLM (zero-inflated negative binomial) 0.22 

Cross-Classification 0.33 

XGBoost 0.60 

Rationalized Decision Tree (preferred) 0.53 

Decision trees can be simple, but with bagging, boosting, and other methods, they can also 

become very complex and powerful.  The XGBoost model (extreme gradient boosting) leverages all these 

advanced features and as anticipated, provided the best goodness-of-fit to the data despite taking all 

measures possible to avoid overfitting including using a holdout sample separate from the training dataset 

and using cross-validation with the training dataset in developing the model.  A grid search of hyper-

parameters including the learning rate and boosting weights was also used to achieve the most robust and 

predictive results.  However, despite the predictive power of the XGBoost model, it was not ultimately 

preferred for two reasons.  First, despite the ability to measure feature importance it is not possible to 

understand how exactly the model uses the various explanatory variables to make predictions.  In this 

sense the model can be considered a proverbial black box.  Second, while utmost care was taken not to 

over-fit the model, the risk of over-fitting remains, particularly with a model that cannot easily be audited 

with human intuition.   

Ultimately, a simpler decision tree approach was taken following the principle of XAI or 

explainable artificial intelligence (9) that predictive methods should be intelligible to their users.  It was 

possible to estimate more explainable decision trees without sacrificing much explanatory power.  In the 

tree illustrated in Figure 10, each node lists the average trip rate as well as the number of observations that 

node represents. This conveys the overall average trip rate (top of the tree) and how it changes as you 

segment the surveyed population.  The tree was created with the assistance of ML and preserves the 

ability to explain the model structure. Machine learning in this case uses simple ANOVA to determine 

which questions best divide the population into distinct groups. Branches that represent spurious divisions 

can be manually removed, the depth of branching controlled, and rules set to maintain a minimum number 

of samples in each group. These features allow a human auditor to be much more comfortable with the 

resulting model compared to full ML that may feel opaque. This approach also makes over-fitting easy to 

identify and avoid. 
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FIGURE 10 Simple, Rationalized Decision Tree for School Trips 

The result is a logical structure that is easy to explain and not overfit. For example, the first 

question asked is if the person is over 18 (an adult). The left and right halves of the tree then describe the 

behavior of adults and children separately, which is intuitive for school trips. The left side of the tree 

describes the behavior of adults, and if an adult has no children in the household (oth_kids < 1), they 

effectively make no school trips. If they do have children, then work status, age, and gender help explain 

differences in trip making.  The right half of the tree describes the behavior of children. Children under 5 

make few school trips on average (usually only those with older siblings) while school-age kids make 

many more. Per-capita income and the number of workers in the household further influence their 

behavior. 

Although the ability to interpret the model comes at a cost in goodness-of-fit, the cost is modest, 

and the method still significantly outperforms all traditional methods.  The decision tree is able to capture 

the highly non-linear aspects of trip making like cross-classification, while also incorporating more 

explanatory variables, maintaining appropriate sample sizes for rate estimation, and partitioning the data 

in a more intelligent way.   

The tree for maintenance/eat-out trips (N-HB-OME, including shopping, eating, personal 

business, etc.) provides another example.  As can be seen in Figure 11 in addition to age and work status, 

this model recognizes differences based on the accessibilities where people live. The model also 

recognizes that the factors influencing shopping trips for non-seniors (under 63) are relatively simple: 

work status and age. At the same time, a larger number of factors (including accessibility) influence 

seniors over 63. The role of accessibility here is particularly interesting. With poor general accessibility 
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(g_access), best associated with rural areas, seniors make fewer home-based shopping trips. On the other 

hand, the trip rate falls again for seniors in downtowns (high nearby accessibility, n_access) reflecting 

their ability to chain multiple trips together in a single outing, making more NHB and fewer HB trips. 

FIGURE 11 Rationalized Decision Tree for Maintenance/Eat-Out Trips 

NESTED DESTINATION CHOICE MODELS 

The second innovation introduced in the TRMG2 is the use of nested logit models for HB 

destination choice with the choice of destination zone conditional on a choice of destination 

district.  Nested logit models have long and widely been used for mode choice (10,11).  It has 

also been common to consider destination and mode choices together as a nested logit model 

(12).  The possibility of using nested logit models to address unobserved homogeneity between 

alternative destinations related to spatial autocorrelation has long been acknowledged but was 

initially generally rejected either as too difficult computationally or because of the potentially 

arbitrary nature of spatial nesting structures (14, 15).  However, with the advent of more 

computing power after the turn of the millennium, there have been at least two successful 

demonstrations of the use of the nested logit model for destination choice itself (16, 17).  While 

these papers demonstrate the value of the approach, both were foreign academic applications, 

and this is believed to be the first fully-realized application of the approach in practice in the 

United States.   

The Triangle region being highly multinucleated with several distinct communities was 

thought to be an ideal case for testing spatial nesting in destination choice.  Twelve districts, 
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shown in Figure 12, were developed in consultation with the local agencies to delineate distinct 

communities or subareas of the region.  

FIGURE 12 District Scheme for Spatial Nesting 

The use of these districts as nests in a hierarchical destination choice process helps overcome the 

loss of spatial information such as adjacency in treating destination choice as a discrete choice among 

competing alternatives.  Alternative means of capturing spatial information that is otherwise lost in 

discrete choice approaches have generally involved the use of one or more accessibility variables 

(13,18,19) (but see 20 for a more complex approach).  For the TRMG2, rather than relying exclusively on 

nesting or accessibilities, nested logit destination choice models with accessibility terms were estimated, 

combining these approaches for the first time.  As both the nesting and accessibility approaches are 

limited in different ways in their ability to capture spatial autocorrelation, it was hypothesized that a 

model employing both would be more successful than a model relying on either approach alone.  The 

significance of both accessibility variables and nesting coefficients in the estimated models confirms this 

hypothesis.   

The estimation results for the work (W_HB_W) trip model are presented in 

Table 2 as an example.   
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Table 2 Nested Logit Destination Choice Model Estimation Results 

In addition to the standard size, attraction, impedance, and intrazonal variables the model contains 

the aforementioned accessibility variables and three sets of variables related to the nesting: alternative 
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specific constants (ASCs) for the nests, “HomeClusters” or intra-nest constants, and the nesting 

coefficients.  As can be seen in  

Table 2 for work trips four of the twelve district nests have ASCs significantly different from 

zero, eight of the twelve have a home cluster effect, and ten of the twelve have a nesting coefficient 

significantly different from unity indicating that zones within the district have unobserved similarities and 

therefore compete more directly with each other than with zones in other districts.  The t statistics for 

these variables indicate that the nested model significantly outperforms and strongly rejects the unnested 

multinomial logit model specification which is standard in practice.  The results for other HB trip types 

were similar with most districts having significant nesting coefficients in most models with the exception 

of escort to school trips on work tours (W_HB_EK12) for which the lack of significance may likely have 

been due to a relatively small number of observations (225) in the estimation dataset.   

The significance of the nesting structure and superiority of the nested modeling approach are 

perhaps not surprising given the multinucleated nature of the Triangle region, but the strength with which 

the nested models reject their multinomial counterparts suggests that nesting should at least be tested even 

in more traditionally structured regions.   

LINKED NON-HOME-BASED MODELS 
There are many problems related to non-home-based trips in traditional trip-based models arising 

from the fact that they are disconnected from the home-based trips with which they comprise complete 

tours. In order to properly represent non-home-based trips, two spatial distribution or destination/spatial 

choice models are required to account for both the trip’s origin location and destination location. The 

four-step model architecture is fundamentally flawed because it produces non-home-based trips from only 

one trip distribution or spatial choice model. 

Earlier hybrid models produced linked HB and NHB trips simultaneously from two spatial choice 

models called stop location choice and stop sequence choice models (2,3).  The third distinguishing 

feature of the TRMG2 is its use of a simpler method of linking HB and NHB trips popularized by the 

FHWA’s Travel Model Improvement Program (TMIP) (21).  In this approach, non-home-based trips are 

generated separately for each mode based on home-based trip destinations and modes and then 

distributed.  In this framework, the HB destination choice model serves as one spatial choice model and 

the NHB destination choice model serves as the second necessary to properly produce NHB trips.   

This framework ensures the linkage of NHB trips to HB trips on the same tour in both location 

and mode.  For example, NHB single occupant vehicle (SOV) trips on nonwork tours are generated most 

by SOV HB trips on non-work tours, somewhat less by high occupant vehicle (HOV) HB trips on non-

work tours and not at all by non-motorized trips because no car is available after the HB trip.  Conversely, 

NHB walk trips can be generated by HB trips of any mode although they are generated most by paid auto 

and walk trips.  Thus, for example, if a scenario results in more home-based trips to downtown Raleigh, 

the scenario will also produce more non-home-based trips in and around downtown Raleigh.  Also, to the 

extent that these new home-based trips are auto trips, more of the non-home-based trips will be as well; 

whereas, to the extent that the new home-based trips are by transit, more of the non-home-based trips will 

be by walking and a perhaps a few by transit. This is particularly important for Chapel Hill in the Triangle 

model, which drastically restricts parking availability downtown.   

Since the original publication of the method by TMIP, the method has been further enhanced 

using boosting to incorporate accessibility.  In this approach, the number of NHB trips (�̂�𝑝,𝑚) of a given 

mode (m) and NHB trip type (p) is initially estimated as a function of the number of HB destinations 

(Xt,m) by mode and HB trip type (t).   

�̂�𝑝,𝑚 =∑𝛽𝑡,𝑚𝑋𝑡,𝑚
𝑡,𝑚

( 1 ) 

A boosting model can then be estimated using log-log regression on residuals of the log transform 

of the initial model, where  and  are the new parameters, A is a measure of accessibility to nearby 

destinations and �̅�𝑝,𝑚 is the observed number of trips. 
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𝛾𝑙𝑛(𝐴) + 𝑙𝑛(𝛼) = 𝑙𝑛(�̅�𝑝,𝑚) − 𝑙𝑛(�̂�𝑝,𝑚) ( 2 ) 

So that a revised, boosted estimate of the number of NHB trips (Yp,m) is given by Equation 3. 

𝑌𝑝,𝑚 = 𝛼𝐴𝛾∑𝛽𝑡,𝑚𝑋𝑡,𝑚
𝑡,𝑚

( 3 ) 

Figure 13 illustrates the effect of accessibility to nearby destinations on NHB trip rates by mode 

and type.  For SOV and HOV modes, the NHB trip rate is roughly 50% lower in the least accessible 

(rural) areas; whereas, the NHB trip rate marginally increases up to 50% higher than the regional average 

for the most accessible areas in the region.  For NHB walk trips, walk accessibility has a more modest 

affect increasing NHB trip rates by 10 to 20% in the most walk accessible areas but asymptotically 

approaching zero as walk accessibility approaches zero.   

FIGURE 13 Accessibility Boosting of NHB Trip Rates 

RESULTS OF SENSITIVITY TESTS 
The TRMG2 was subjected to a series of rigorous sensitivity tests to see if it achieved its goal of 

improved response compared to trip-based models. This paper will present one sensitivity test, the 

addition of a bus route, in detail, but other sensitivity tests included changes to household income, 

improvements to pedestrian infrastructure (a pedestrian bridge over a freeway), roadway widening, 

highway tolling, and parking changes. The TRMG2 met or exceeded expectations in each test. 

The single test that best illustrates the multiple improved sensitivities of the TRMG2 is the addition of a 

single bus route. In FIGURE 14, the new route is shown in green running next to Lake Lynn in the center 

of the map. 
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FIGURE 14 Map Showing Addition of a New Bus Route 

In a traditional trip model, this addition should lead to a slight change in mode shift, which in turn 

impacts assignment. In the TRMG2, the model responded with changes in: 

- Auto ownership 

- Trip productions 

- Non-motorized trip making 

- Mode choice 

- NHB trip making 

- Transit/Highway assignments 

Auto ownership 

The addition of the new bus route caused a slight decrease in auto ownership of 0.6%. This represents the 

marginal household being able to give up an extra car given new transit access and is captured by the 

transit accessibility terms in the auto ownership choice model. 

HB trip productions 

The decrease in auto ownership of 0.6% led to a reduction in home-based trip making by 0.2%. As 

households give up cars, they make fewer trips and become more strategic about trips they do make 

employing strategies like trip chaining and carpooling. 

Non-motorized 

Non-motorized trips increased by 0.12% despite reductions in total trip making and is largely the result of 

decreased auto ownership. 

Mode choice 

As expected, transit mode share in the nearby zones increased from 0.7% to 0.9%. 
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NHB trip production 

The improved handling of NHB trips in the TRMG2 meant that the upstream changes to HB trips (in both 

number and mode) directly impacted NHB trip making. NHB auto trips fell while NHB transit trips 

increased. 

Assignment 

Finally, the culmination of upstream impacts resulted in transit trips increasing at the expense of auto 

trips. 

While the impact is small (as expected for a single new bus route), the TRMG2 shifts the neighborhood 

away from autos and towards multi-modal travel patterns. Each component displayed logical sensitivities 

and downstream models responded to upstream changes appropriately. 

CONCLUSION 
This paper presents a new and elegant approach to a hybrid travel demand model. This new framework 

advances the practice through two notable innovations. First, is the use of a machine learning decision 

tree structure for the HB trip production models. This approach introduces a disaggregate model that is 

intuitive yet powerful, allows the use of person and household characteristics, and that outperforms 

various other trip generation model goodness-of-fit measures. Second is the use of nested logit models for 

HB destination choice, yielding model results that better reflect the spatial effects of destination choice. In 

addition to these two innovations, the TRMG2 offers several other advances that will be of interest to 

other regions. Finally, sensitivity testing shows a model that is appropriately sensitive to changes in ways 

not found in trip based models. This new framework will be of interest to other MPOs and regional 

agencies that desire to moving away from traditional trip based models to more advanced models, but 

without the upfront investment in time and cost of many activity-based models.    
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